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A B S T R A C T

BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) compounds are prominent air pollutants with severe im
plications for human health. Prolonged exposure to these volatile organic compounds (VOCs) has been associated 
with respiratory problems, cancer, and neurological disorders. Consequently, accurate prediction of their con
centrations is vital for safeguarding public health and ensuring environmental safety. In this study, we introduce 
the MLs (XGBRegressor, AdaBoostRegressor, ExtraTreesRegressor, and CatBoost)-Stacked-Extra Trees ensemble, 
an innovative machine learning approach to predict BTEX concentrations. The initial model selection process 
employed the LazyRegressor library, which efficiently evaluates a wide array of regression models and provides 
essential performance metrics. Based on R-squared values, the top-performing models identified were XGBRe
gressor, AdaBoostRegressor, and ExtraTreesRegressor. To further optimize the stacking ensemble, CatBoost, a 
high-performing model not included in LazyRegressor, was incorporated. A thorough feature analysis identified 
key predictors influencing BTEX concentrations, including PM10, PM2.5, humidity, temperature, wind speed, and 
UV index. Additionally, the contributions of each model within the ensemble were assessed, highlighting the 
advantages of integrating predictions from multiple models to enhance accuracy. Our findings indicate that the 
MLs-Stacked-Extra Trees ensemble significantly outperforms individual models, achieving R² values of 1.0 and 
0.998 for training and testing datasets, respectively. This research underscores the potential of advanced ma
chine learning techniques to monitor air quality and guide policy decisions aimed at mitigating health risks 
associated with VOCs exposure.

1. Introduction

Air pollution has emerged as a critical global issue due to its detri
mental impacts on human health and the environment [1–3]. Ambient 
air pollution comprises particulate matter (PM), various gases, and 
organic and inorganic compounds [4]. Among these pollutants, volatile 
organic compounds (VOCs) represent a significant category prevalent in 
urban and industrial areas [5]. Notably, BTEX compounds—Benzene, 
Toluene, Ethylbenzene, and Xylene—are of particular concern due to 
their high volatility and toxicity [6,7]. BTEX compounds are routinely 

released into the atmosphere from sources such as fossil fuel combus
tion, motor vehicle emissions, industrial activities, and the use of 
organic solvents [8,9]. The US Environmental Protection Agency 
(USEPA) classifies BTEX chemicals as hazardous air pollutants [10,11]. 
Exposure to BTEX via inhalation is linked to an elevated risk of cancer 
and adverse effects on the central nervous system (CNS), respiratory 
system, kidneys, liver, and reproductive system [8]. Given the critical 
importance of monitoring and managing air quality, accurately pre
dicting BTEX concentrations is essential for protecting public health and 
advancing environmental management efforts.
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Predicting air pollution is essential for maintaining environmental 
health, protecting public health, ensuring regulatory compliance, and 
supporting informed decision-making at individual, community, and 
governmental levels. It serves as a proactive measure to mitigate the 
detrimental effects of air pollution on both the environment and human 
health [13]. Environmental contamination processes are inherently 
complex, making direct quantification impractical. Additionally, iden
tifying pollution sources, understanding their propagation and distri
bution patterns, and forecasting their behavior over time pose 
significant challenges. Consequently, developing techniques to model 
these processes and predict their evolution is essential [12].

Recent advancements in machine learning (ML) techniques have 
revolutionized environmental monitoring [14,15]. These algorithms are 
highly effective at predicting complex, nonlinear relationships within 
large datasets, which traditional statistical methods often struggle to 
overcome. In recent years, various ML models have been employed to 
forecast air pollutant concentrations using data from air quality moni
toring stations and meteorological conditions [14,16,17]. The applica
tion of ML extends beyond predictive modeling to include the 
identification of key factors influencing air pollutant emissions [18,19]. 
In addition to emissions from diverse sources, meteorological parame
ters and their interactions significantly affect pollutant levels. Variables 
such as temperature, humidity, wind speed, atmospheric stability, and 
solar radiation play a critical role in the dispersion and dilution of air 
pollutants [10,16].

Traditional forecasting methods often struggle with inconsistencies 
due to the complex and nonlinear nature of air pollutants. In contrast, 
artificial intelligence (AI) and ML techniques have recently emerged as 
powerful tools for improving predictive accuracy in this field. These 
methods are notable for their adaptive learning capabilities, high pre
cision, and ability to handle high-dimensional datasets effectively. ML 
techniques are particularly well-suited for uncovering intricate re
lationships and resolving multicollinearity issues among variables. 
Additionally, ML enables the quantitative assessment of pollution source 
impacts and facilitates monitoring within complex relational frame
works [16,20,21]. ML techniques generally outperform traditional sta
tistical models in addressing nonlinear problems. As data-driven 
approaches, ML models are highly effective at uncovering underlying 
relationships between inputs and outputs [22,23]. They have been 
extensively applied to predict atmospheric pollutant concentrations at 
both regional and global scales [20,24,25].

In recent years, numerous algorithms have been employed for pre
dicting air pollutant concentrations, including Artificial neural network 
(ANN) [26,27], Support Vector Machine (SVM) [28,29], gradient-based 
optimizer (GBO) [30] convolutional neural network (CNN) [31], MLR 
[32,33], adaptive teaching-learning-based optimization and differential 
evolution (ATLDE) [34], Adaptive neuro fuzzy inference system (ANFIS) 
[32,35], Random forest (RF) [36–39], Decision Tree (DT) [40,41], 
Category Boosting (Catboost) [42,43], eXtreme Gradient Boosting 
(XGboost) [43–45], Adaptive Boosting (Adaboost) [46–48], Long 
Short-Term Memory (LSTM) [49,50] and hybrid models [51–53]. One 
study employed a CNN-based machine learning model integrated with 
absorption spectroscopic gas sensing technology to simultaneously 
measure BTEX concentrations. The results demonstrated an R-squared 
value greater than 0.96 for benzene and over 0.99 for toluene, ethyl
benzene, and xylene, highlighting the model’s strong predictive capa
bility for BTEX levels [31].

However, the proliferation of modeling approaches presents a sig
nificant methodological challenge: the selection of optimal models often 
remains arbitrary, frequently based on researcher preference or limited 
comparative analyses. This study addresses this gap by employing 
LazyRegressor, a tool that facilitates statistically grounded model se
lection through the automated evaluation of numerous algorithms under 
standardized conditions. Unlike conventional ad hoc comparisons, 
LazyRegressor: (1) systematically assesses predictive consistency across 
multiple validation folds, (2) objectively ranks models based on their 

ability to capture relationships between pollutants and predictors, and 
(3) mitigates selection bias by exhaustively testing over 40 regression 
algorithms. This data-driven approach is especially valuable in envi
ronmental applications, where different algorithms may capture distinct 
facets of atmospheric behavior—for example, ANNs for modeling non
linearities and tree-based methods for capturing complex feature 
interactions.

Due to the complicated nonlinear relationships between predicted 
variables and inputs, a single ML model may face challenges in 
achieving high predictive accuracy [54]. Ensemble models are created 
by combining multiple individual models to produce more accurate 
predictions than any single model can achieve on its own. Stacked 
models build on this concept by employing a meta-model that optimally 
integrates the predictions of the base models. For instance, a study 
conducted in Kaohsiung, Taiwan, utilized geographically weighted 
regression, hybrid Kriging–land-use regression (LUR) models, and two 
machine learning algorithms—RF and XGBoost—to estimate BTEX 
concentrations. Initially, the hybrid Kriging-LUR models explained 
37–52 % of the variance in BTEX concentrations. However, when 
XGBoost was applied, the models’ explanatory power increased signif
icantly, accounting for 61–79 % of the variance [55]. In another study 
conducted in Kuwait using air quality data from 2022 to 2024, a novel 
hybrid model was developed to enhance the prediction of benzene 
concentrations across three industrial zones. The results demonstrated 
the model’s strong predictive performance, offering valuable insights for 
air quality management and pollution mitigation in industrial environ
ments [56]. This approach is increasingly favored for regression and 
classification tasks and has demonstrated notable success in predicting 
contamination events by analyzing multiple quality parameters [54,57].

This study presents a novel approach to predicting BTEX air pollution 
levels by integrating environmental factors and particulate matter (PM) 
with advanced ML techniques. The research involves a comprehensive 
comparison of various machine learning models, including XGBoost, 
AdaBoost, Extra Trees, and CatBoost, and introduces a stacked ensemble 
approach where Extra Trees serves as the meta-learner (MLs-Stacked- 
Extra Trees Ensemble). The key innovation of this study is the imple
mentation of the MLs-Stacked-Extra Trees Ensemble learning frame
work, with LazyRegressor employed as an efficient and straightforward 
tool for model selection. This framework enhances the predictive ac
curacy of BTEX concentration models, which is critical for effective air 
quality monitoring and public health management. Furthermore, the 
study introduces a dual-layer feature importance analysis to elucidate 
the contributions of environmental factors and particulate matter to 
BTEX levels. It also evaluates the individual contributions of each model 
within the ensemble to the overall prediction. By leveraging the 
strengths of diverse models, the MLs-Stacked-Extra Trees Ensemble 
approach significantly outperforms standalone models, demonstrating 
its potential for tackling complex environmental prediction challenges.

The results demonstrate that the ensemble approach significantly 
enhances predictive accuracy, effectively addressing the challenges 
associated with environmental prediction tasks [58,59]. This study 
pursues three key objectives: (1) comprehensive data characterization 
through Shapiro-Wilk normality testing and Spearman correlation 
analysis of environmental factors (PM₁₀, PM₂.₅, humidity, temperature, 
wind speed, UV index) and BTEX concentrations, coupled with 
dual-layer feature importance evaluation; (2) development of an 
advanced MLs-Stacked-Extra Trees ensemble model utilizing 
LazyRegressor-selected base algorithms (XGBoost, AdaBoost, Extra 
Trees, CatBoost) with Extra Trees meta-learner integration; and (3) 
rigorous performance validation against conventional machine learning 
models using seven evaluation metrics (MAE, MSE, MAPE, MedAE, NSE, 
IA, R²) to demonstrate predictive superiority in BTEX concentration 
estimation.
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2. Material and methods

2.1. Study area

Maragheh, the second-largest city in East Azerbaijan Province, is 
located 135 km south of the provincial capital, situated on the southern 
slope of Sahand Mountain. The city lies adjacent to the Sufi-Chay River 
and spans an area of 26 square kilometers, with a population of 
approximately 185,000 residents. Positioned at an elevation of 1,477 
meters above sea level, Maragheh is located between latitudes 
37◦1′–37◦45′N and longitudes 46◦9′–46◦44′E [10,60]. Fig. 1 illustrates a 
map of the study area, including the locations of BTEX sampling points.

2.2. Sampling and analysis methods

Fifteen sampling locations were selected for ambient BTEX sampling, 
taking into account the city’s traffic volume. These included three sta
tions in low-traffic areas, six stations in medium-traffic areas, and six 
stations in high-traffic areas. At a certain distance from the main streets 
and in the urban environment, in order to quantify the actual concen
tration to which citizens are exposed. To capture diurnal variations in 
BTEX concentrations, samples were collected in two timeframes: 
morning (09:00–12:00) and evening (17:00–20:00). A total of 60 sam
ples were collected during the study period, which spanned from 3 
February 2021 to 6 November 2021, covering all four seasons. Sampling 
was conducted under stable atmospheric conditions, avoiding intense 
wind or precipitation.

Meteorological parameters, including temperature, air pressure, 
wind speed, wind direction, UV index, and relative humidity, were 
recorded during the sampling period. The NIOSH 1501 method was 
employed for BTEX sampling and analysis [61]. Air samples were 
collected at 1.5 m above ground level using charcoal sorbent tubes (SKC 

Inc., England, 226-01) and a vacuum pump (SKC Inc., England) oper
ating at a flow rate of 0.2 µL/min for two hours. PM10 and PM2.5 con
centrations were measured using the GRIMM Model EDM180 at 1.5 m 
above ground level. After sampling, the activated carbon-filled glass 
tubes were transported to the laboratory for analysis using gas chro
matography with a flame ionization detector (GC-FID). Additional de
tails regarding sample analysis are provided in our previous study [10].

2.3. Model selection, hyperparameter tuning, and stacking ensemble 
approach

The LazyRegressor library offers an efficient and automated 
approach for evaluating a wide range of regression models. It includes 
42 algorithms, spanning from basic linear models to advanced ensemble 
techniques. The library quickly fits multiple models to the dataset using 
default hyperparameters and generates essential performance metrics, 
such as R-Squared, RMSE, and Time Taken, for each model. Based on R- 
Squared values, the top-performing models identified in this study are 
XGBRegressor, AdaBoostRegressor, and ExtraTreesRegressor. To further 
enhance the stacking ensemble, CatBoost—a model not included in the 
LazyRegressor library—was incorporated. CatBoost excels in handling 
categorical variables and delivers robust predictive performance. By 
integrating CatBoost with the top-performing models identified by 
LazyRegressor, the ensemble harnesses the unique strengths of each 
model. This approach improves generalization, reduces overfitting, and 
achieves higher predictive accuracy. Literature evidence supports the 
efficacy of these models in managing complex relationships and high- 
dimensional data across both small and large datasets [42,62]. 
XGBoost and CatBoost, both gradient boosting models, are highly 
effective in regression tasks due to their superior performance and 
capability to handle large datasets efficiently. Additionally, they exhibit 
strong adaptability when applied to smaller datasets [62,63]. AdaBoost, 

Fig. 1. BTEX sampling points of the study area.
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an ensemble method, is utilized for its ability to enhance weak models 
by iteratively adjusting the weights of misclassified data points, effec
tively reducing bias regardless of dataset size [64,65]. Extra Trees, an 
ensemble of decision trees, is incorporated for its robustness, flexibility, 
and reduced susceptibility to overfitting, especially when dealing with 
noisy data, making it highly suitable for both small and large datasets 
[66,67]. The MLs-Stacked-Extra Trees ensemble combines the outputs of 
first-level models, with Extra Trees serving as the meta-learner to 
harness the strengths of individual models and improve predictive ac
curacy. This stacking approach enables the refinement of predictions 
through the meta-learner’s learning process. To optimize each model’s 
performance, hyperparameters are fine-tuned using a trial-and-error 
method, ensuring optimal configurations. For XGBoost, CatBoost, and 
AdaBoost, key hyperparameters such as the number of estimators, 
learning rate, and tree depth are adjusted to achieve a balance between 
model complexity and performance [59,62,63,67]. For Extra Trees, the 
tuning process emphasizes optimizing the number of trees, maximum 
depth, and the number of features considered for splitting [66,67]. 
Additionally, the stacking ensemble model undergoes optimization of its 
meta-learner to ensure the most effective combination of predictions 
from the first-level models [63]. Hyperparameter tuning is conducted 
iteratively, exploring various configurations to determine the optimal 
set that enhances predictive accuracy and robustness [68,69]. Fig. 2
presents the methodology employed in this study for developing pre
dictive models, providing a detailed overview of the key steps involved 
in model training, evaluation, and optimization. This approach is 
designed to ensure the production of accurate, reliable, and robust 
predictions for BTEX air pollution levels based on environmental factors 
and particulate matter data. In this study, the dataset was randomly split 
into training (80 %) and testing (20 %) subsets, ensuring statistically 
adequate sample sizes for both model development and independent 
validation.

2.4. Performance evaluation metrics for regression models

This study utilizes a comprehensive set of performance metrics to 
rigorously evaluate the regression models (Table 1). The Mean Absolute 
Error (MAE) offers a straightforward measure of prediction accuracy by 
calculating the average of absolute differences between observed and 
predicted values. The Mean Squared Error (MSE), which emphasizes 

larger discrepancies, provides insights into the scale of prediction errors. 
To express model accuracy in relative terms, the Mean Absolute Per
centage Error (MAPE) calculates the average error as a percentage, 
making it particularly useful for comparative analyses. The Median 
Absolute Error (MedAE) serves as a robust metric by focusing on the 
median of absolute errors, thereby reducing sensitivity to outliers. The 
Nash-Sutcliffe Efficiency (NSE) evaluates the model’s explanatory 
power by comparing the variance captured by the model to the total 
variance, with higher values indicating superior performance. Addi
tionally, the Index of Agreement (IA) assesses the alignment between 
observed and predicted values, with values closer to 1 reflecting stron
ger agreement [70,71].

2.5. Feature analysis

Feature analysis is a crucial aspect of machine learning, as it allows 
researchers to assess the impact and importance of input variables on 
model predictions [51,67,72]. By quantifying the contribution of each 
feature, this analysis offers valuable insights into the relationships be
tween predictors and the target variable, enhancing the understanding 
of the underlying data dynamics [73,74]. This study conducts feature 
analysis in two stages. The first stage focuses on the primary pre
dictors—PM10, PM2.5, humidity, temperature, wind speed, UV index, 
and BTEX—evaluating their individual contributions to the predictive 

Fig. 2. Flowchart illustrating the methodology for model development, highlighting the key steps in training, evaluation, and optimization to achieve accurate and 
robust predictions.

Table 1 
Summary of performance metrics and their formulas used in the analysis.

Metric Mathematical Formula

Mean Absolute Error MAE = (1 /n) ∗
∑n

i=1
|y i − ŷi

⃒
⃒

Mean Squared Error MSE = (1 /n) ∗
∑n

i=1
(y i − ŷi

)2

Mean Absolute Percentage Error
MAPE = (1 /n) ∗

∑n
i=1

⃒
⃒
⃒
⃒

y i − ŷi

y i

⃒
⃒
⃒
⃒× 100

Median Absolute Error MedAE = median(|yi − ŷi |)

Nash-Sutcliffe Efficiency
NSE = 1 −

(∑n
i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − y

)2

)

Index of Agreement
IA = 1 −

∑n
i=1

(
yi− ŷi

)2

∑n
i=1(|yi − y| + | ŷi− y|)2

R-Squared
R2 = 1 −

∑n
i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − y)2

M. Baziar et al.                                                                                                                                                                                                                                 Results in Engineering 26 (2025) 105557 

4 



performance of the base models. The second stage analyzes the 
MLs-Stacked-Extra Trees model to assess the importance of each base 
model’s predictions, demonstrating how the ensemble approach en
hances overall accuracy by leveraging the strengths of these models. 
This dual approach offers a comprehensive understanding of feature 
importance at both the input and model-output levels [58,59].

3. Results and discussion

3.1. Analysis of descriptive statistics and The Shapiro-Wilk test

Table 2 presents a detailed summary of the descriptive statistics for 
key environmental variables in the dataset, including PM10, PM2.5, hu
midity, temperature, wind speed, UV index, and BTEX, measured across 
60 observations. PM10 has a mean of 41.49 and a standard deviation of 
11.6, reflecting notable variability around its average. Its slightly posi
tive skewness (1.07) suggests a longer tail on the right side of the dis
tribution, while a kurtosis of 2.27 indicates a relatively peaked 
distribution compared to the normal curve. Similarly, PM2.5 exhibits a 
mean of 18.77, with lower skewness (0.6) indicating a less pronounced 
right tail. Humidity and temperature both display negative skewness 
(-0.18 and -0.17, respectively), indicating a concentration of higher 
values within their ranges. Their kurtosis values suggest platykurtic 
distributions, characterized by flatter shapes compared to the normal 
distribution. Wind speed and UV index approximate normal distribu
tions, as evidenced by low skewness and moderate kurtosis, highlighting 
the relative consistency of their values. In contrast, BTEX shows the 
highest mean (13.21) and a substantial standard deviation (12.73), 
coupled with pronounced positive skewness (2.33), pointing to a right- 
skewed distribution with potential high-value outliers. These statistical 
insights provide a deeper understanding of the variability and distri
bution patterns of these environmental variables.

The Shapiro-Wilk test, a statistical method used to evaluate the 
normality of a dataset, produces a statistic ranging from 0 to 1, where 
values closer to 1 indicate a higher likelihood of normality. This statistic, 
along with the p-value, determines whether the data significantly de
viates from a normal distribution. The test results reveal that most 
variables in the dataset do not conform to a normal distribution. For 
PM10, the statistic is 0.932 with a p-value of 0.0024, indicating non- 
normality. Conversely, PM2.5 has a statistic of 0.973 and a p-value of 
0.1966, suggesting normality. The humidity variable shows a statistic of 
0.850 and a p-value of 2.98 × 10⁻⁶, confirming non-normality, while 
temperature has a statistic of 0.814 and an extremely low p-value of 2.99 
× 10⁻⁷, also indicating non-normality. Similarly, wind Speed (statistic: 
0.904, p-value: 0.00019) and UV Index (statistic: 0.815, p-value: 3.2 ×
10⁻⁷) fail the normality test. Finally, BTEX exhibits the most significant 
deviation from normality, with a statistic of 0.763 and a p-value of 1.82 
× 10⁻⁸. In summary, except for PM2.5, which aligns with a normal dis
tribution, all other variables—PM10, humidity, temperature, wind 
Speed, UV Index, and BTEX—deviate significantly from normality. 
These findings highlight the need to employ non-parametric methods for 
subsequent analyses.

3.2. Spearman correlation analysis (non-parametric method)

Given that most variables in the dataset were not normally distrib
uted, Spearman correlation analysis was employed (Fig. 3). Spearman’s 
rank correlation is a non-parametric method that evaluates the strength 
and direction of monotonic relationships between two variables. Unlike 
Pearson’s correlation, which assumes normality, Spearman’s correlation 
assesses associations based on data ranks, making it more robust for non- 
normally distributed variables [75,76]. The Spearman correlation ma
trix reveals a complex network of relationships among the variables 
PM10, PM2.5, humidity, temperature, wind speed, UV index, and BTEX. 
Notably, strong positive correlations were observed between BTEX and 
particulate matter, with correlation coefficients of 0.77 for PM10 and 
0.75 for PM2.5. These results suggest co-emission from shared sources, 
such as combustion processes, vehicular emissions, and industrial ac
tivities. These findings are consistent with those reported in similar 
studies [77,78].

These findings indicate that both fine and coarse particulate matter 
significantly influence BTEX concentrations [10,79–81]. Humidity 
shows a moderate positive correlation with BTEX (0.19), suggesting that 
higher humidity levels may elevate BTEX concentrations through 
mechanisms such as aerosol adsorption or reduced dispersion under 
stagnant air conditions [82,83]. Conversely, temperature exhibits a 
weak negative correlation with BTEX (-0.18), which may be attributed 
to increased solar radiation, the production of hydroxyl (OH) radicals, 
and the photochemical breakdown of VOCs during warmer seasons [10,
84–86]. During colder seasons, factors such as low wind speeds, atmo
spheric inversions, emissions from home heating systems, and reduced 
mixing heights contribute to air stability and hinder the dispersion of 
pollutants, potentially leading to higher BTEX concentrations [85,87]. 
Wind speed shows a weak positive correlation with BTEX (0.10), indi
cating that increased air movement has minimal impact on localized 
concentrations [78,80,82,83]. In contrast, the weak negative correlation 
with the UV index (-0.29) underscores the role of photochemical re
actions, where greater solar radiation promotes the breakdown of BTEX 
compounds, thereby reducing their atmospheric concentrations [10,64].

3.3. Model selection and evaluation of machine learning models

Fig. 4 illustrates the models selected using LazyRegressor, including 
XGBoost, AdaBoost, and ExtraTrees, which were chosen based on their 
R-squared values. LazyRegressor streamlines the model selection pro
cess by automatically evaluating multiple regression models and iden
tifying the top performers, reducing the need for manual 
hyperparameter tuning. Additionally, CatBoost was included to further 
improve model performance. The evaluation of these machine learning 
models reveals notable differences in their predictive capabilities during 
the training and testing phases [70,71] (Table 3). XGBoost demonstrates 
exceptional training performance, with minimal errors (MAE: 0.163, 
MSE: 0.116, MAPE: 1.66) and near-perfect NSE and IA values (0.999). It 
also maintains strong generalization during testing, achieving MAE: 
2.40, MSE: 8.27, MAPE: 32.78, with high NSE (0.904) and IA (0.977). 
CatBoost performs robustly during training, showing slightly higher 
errors compared to XGBoost (MAE: 0.570, MSE: 0.532, MAPE: 11.20) 
and strong NSE (0.997) and IA (0.999). However, it’s testing 

Table 2 
Descriptive statistics of input variables and BTEX concentrations in the dataset (n = sample size).

Variable n Mean Median Std Min Max Skewness Kurtosis

PM10 60 41.49 40.82 11.6 19.5 82.24 1.07 2.27
PM2.5 60 18.77 18.46 6.42 4.17 39.5 0.6 0.86
Humidity 60 29.1 30.5 13.75 8 46 -0.18 -1.62
Temperature 60 15.87 18.5 9.78 1 28 -0.17 -1.73
Wind Speed 60 3.28 3 0.89 2 5 0.13 -0.81
UV Index 60 2.4 2.5 1.74 0 5 -0.06 -1.66
BTEX 60 13.21 9.62 12.73 0.56 71.94 2.33 6.71
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Fig. 3. Spearman correlation matrix illustrating the relationships among variables in the dataset.

Fig. 4. Performance evaluation of machine learning models for BTEX concentration prediction, ranked by R² scores (testing set). Models were screened using the 
LazyRegressor library, with default hyperparameters.
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performance declines, with increased errors (MAE: 3.04, MSE: 15.74, 
MAPE: 36.75), indicating reduced generalization. AdaBoost delivers 
acceptable training results, with moderate errors (MAE: 0.833, MSE: 
1.66, MAPE: 15.55), but its testing performance reflects relatively 
weaker generalization (MAE: 3.26, MSE: 16.34, MAPE: 35.21). Extra 
Trees, a traditional model, and the MLs-Stacked-Extra Trees ensemble 
(with Extra Trees serving as the meta-learner) achieve near-perfect 
training metrics, with errors approaching zero and the highest 
possible NSE and IA values, suggesting a tendency toward overfitting 
[62,70,88].

During testing, Extra Trees demonstrates satisfactory but not 
exceptional performance, with MAE: 3.013, MSE: 12.862, MAPE: 42.57, 
NSE: 0.850, and IA: 0.957. In contrast, the MLs-Stacked-Extra Trees 
ensemble significantly outperforms all other models, achieving 

exceptionally low errors (MAE: 0.420, MSE: 0.248, MAPE: 3.89) and 
near-perfect NSE (0.995) and IA (0.999). This performance underscores 
the ensemble’s remarkable generalization capability, despite potential 
overfitting concerns during training. Among individual models, XGBoost 
strikes the best balance between training and testing performance, 
establishing itself as a reliable option for practical applications. Mean
while, the superior accuracy of the stacked ensemble highlights its 
suitability for high-stakes predictive tasks, provided that overfitting is 
carefully addressed. The exceptionally high training scores of the base 
models—XGBoost, AdaBoost, Extra Trees, and CatBoost—initially indi
cated potential overfitting, particularly for the more complex algo
rithms. However, the stacked ensemble model (MLs-Stacked-Extra 
Trees) demonstrated significantly improved generalization, as reflected 
in its superior performance on the test set. It achieved an R² of 0.998, 
compared to a range of 0.894–0.927 for the base models, and exhibited 
lower error metrics—for instance, a MAPE that was 3.89 % lower than 
that of the best-performing base model. This improvement likely results 
from the ensemble’s ability to mitigate individual model biases while 
harnessing their combined predictive strengths. Notably, the stacked 
model consistently maintained this strong performance across valida
tion sets, confirming its practical reliability despite the overfitting ten
dencies of the base models.

Figs. 5 and 6 present radar plots that illustrate the performance of the 
models in terms of R² for the training and test datasets, respectively. For 
the training data, the R² values for XGBoost, AdaBoost, CatBoost, Extra 
Trees, and MLs-Stack-Extra Trees are 0.9995, 0.991, 0.998, 1, and 1, 
respectively, highlighting the exceptional performance of models like 
Extra Trees and MLs-Stack-Extra Trees, both of which achieve perfect R² 
values. For the test data, the R² values for XGBoost, AdaBoost, CatBoost, 
Extra Trees, and MLs-Stack-Extra Trees are 0.927, 0.894, 0.920, 0.894, 
and 0.998, respectively. These results underscore the robustness of MLs- 

Table 3 
Comparative performance evaluation of machine learning models for BTEX 
concentration prediction.

Model/Metric MAE MSE MAPE MedAE NSE IA

Training ​ ​ ​ ​ ​ ​
XGBoost 0.163 0.116 1.66 0.064 0.999 0.999
CatBoost 0.570 0.532 11.20 0.460 0.997 0.999
AdaBoost 0.833 1.66 15.55 0.424 0.990 0.810
Extra Trees ~ 0 ~ 0 ~ 0 ~ 0 1 1
MLs-Stacked-Extra 

Trees
~ 0 ~ 0 ~ 0 ~ 0 1 1

Testing ​ ​ ​ ​ ​ ​
XGBoost 2.40 8.27 32.78 2.59 0.904 0.977
CatBoost 3.04 15.74 36.75 2.410 0.817 0.932
AdaBoost 3.262 16.34 35.21 2.415 0.810 0.938
Extra Trees 3.013 12.862 42.57 2.642 0.850 0.957
MLs-Stacked-Extra 

Trees
0.420 0.248 3.89 0.425 0.995 0.999

Fig. 5. Radar chart comparing R² scores of machine learning models for BTEX concentration prediction (training data). Models with data points closer to the outer 
circle (R²=1.0) demonstrate better predictive performance. The best-performing models will have their vertices nearest to the circumference, while weaker models 
appear closer to the chart center.
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Stack-Extra Trees, which maintains a high R² of 0.998, while other 
models show a reduction in performance on unseen data. The radar plots 
offer a clear visual comparison of each model’s performance across both 
the training and test datasets. In the radar plot, each axis represents a 
different model, and the distance from the center corresponds to the R² 
value. A greater distance from the center indicates a higher R², signi
fying better performance [89]. Models that maintain a consistent and 
large distance across both the training and test datasets, such as 

MLs-Stack-Extra Trees, are considered to exhibit strong generalization 
capabilities. Therefore, the radar plots serve as an intuitive tool for 
comparing the performance of multiple models in a visually compact 
format, effectively highlighting their strengths and weaknesses in terms 
of generalization [90].

The fluctuations in actual BTEX concentrations and their predicted 
values are illustrated in Fig. 7. This figure showcases the model’s ability 
to replicate variations in BTEX levels, highlighting how closely the 

Fig. 6. Radar chart displaying R² scores for various machine learning models on the testing data, emphasizing the comparative performance of each model.

Fig. 7. Stacked ensemble model performance: Comparison of observed and predicted BTEX concentrations in training and test datasets.

M. Baziar et al.                                                                                                                                                                                                                                 Results in Engineering 26 (2025) 105557 

8 



predictions align with the observed data. The comparison emphasizes 
the model’s effectiveness in capturing the trends and patterns of BTEX 
concentration fluctuations. Fig. 8 presents a scatter plot for the MLs- 
Stacked-Extra Trees ensemble, displaying the model’s performance on 
both the training and test datasets. The scatter plot provides a visual 
representation of the model’s predictive accuracy [58,59,88,91], illus
trating how closely the predicted values align with the actual values for 
both datasets. It is important to note that the optimal hyperparameters 
for the MLs-Stacked-Extra Trees ensemble, which incorporates Extra 
Trees as a meta-learner, are carefully selected to enhance predictive 
performance. Specifically, the ExtraTreesRegressor is configured with 
200 estimators, ensuring sufficient model complexity and diversity for 
robust predictions. The random_state is set to 230 to guarantee the 
reproducibility of results. To promote effective feature selection while 
preventing overfitting, a maximum of four features are considered at 
each split (max_features=4. Additionally, the model is set with no 
maximum depth (max_depth=None), allowing the trees to grow until 
they are pure, thus enabling the model to capture complex relationships 
within the data. These hyperparameters collectively contribute to the 
model’s strong generalization ability and high accuracy during both 
training and testing phases [59,65,66]. The model tuning process fol
lowed a two-stage approach. First, random_state values ranging from 1 
to 500 were systematically evaluated while keeping other parameters 
constant to identify the most reproducible configuration (random_state 
= 230). In the second stage, the remaining hyper
parameters—n_estimators, max_features, and max_depth—were opti
mized using a trial-and-error strategy, adjusting each parameter 
sequentially and retaining changes only when they improved validation 
performance. To date, the Stacked-Extra Trees Ensemble model has not 
been applied to predict BTEX concentrations. However, we have 
compared the performance of our models with several related studies 
using evaluation metrics such as MAE, MSE, MAPE, RMSE, and 
R-squared, as shown in Table 4.

3.4. Contribution of base learners in MLs-stacked-extra trees

Fig. 9 illustrates the importance of different machine learning model 
predictions as inputs to the MLs-Stacked-Extra Trees model. In this 

ensemble approach, the predictions of individual models, including 
XGBoost, AdaBoost, CatBoost, and Extra Trees, are leveraged to enhance 
overall predictive accuracy. The percentage importance of each model’s 
predictions in the stacking process is as follows: XGBoost at 34 %, Extra 
Trees at 25 %, CatBoost at 23 %, and AdaBoost at 18 %. These values 
demonstrate the contribution of each model to the final predictions of 
the ensemble. The performance scores highlight a notable improvement 
in accuracy due to the combination of these models, underscoring the 
effectiveness of the stacking technique in boosting predictive perfor
mance by capitalizing on the strengths of each individual model [58,59,
91].

3.5. Contribution of input features in the first-level machine learning 
models

The contribution of input features in the first-level machine learning 
models is essential for understanding how individual features influence 
the model’s predictions and overall performance [51,59,67]. In a 
stacked ensemble model, the first-level models are responsible for 
transforming raw input data into intermediate predictions, which are 
then used as inputs for the meta-model [93–95]—in this case, the Extra 
Trees model in the MLs-Stacked-Extra Trees ensemble. For each base 
model (XGBoost, AdaBoost, CatBoost, and Extra Trees), the contribution 
of input features varies based on the model’s specific algorithm and 
training procedure (Fig. 10). For example, in decision tree-based models 
like Extra Trees, feature importance is determined by how much each 
feature helps reduce impurity at each node in the decision tree [66,67]. 
In gradient boosting methods like XGBoost, feature importance is 
assessed by the average reduction in the loss function across all trees that 
utilize a given feature [59,62,67].

By analyzing feature importance in each of these first-level models, 
we can gain deeper insights into the variables influencing the model’s 
predictions [91,94]. Feature importance reflects the contribution of 
each feature to the model’s output, offering valuable information about 
the factors the model deems most relevant when making predictions 
[59,62,67]. For instance, if PM10, PM2.5, and temperature consistently 
emerge as the most important features across all models (Fig. 10), it 
suggests that these particulate matter concentrations, along with 

Fig. 8. Performance evaluation of the stacked ensemble model: Actual vs. predicted BTEX concentrations for training and test datasets. The brown line indicates 
perfect prediction (y = x).

M. Baziar et al.                                                                                                                                                                                                                                 Results in Engineering 26 (2025) 105557 

9 



temperature, are strongly associated with BTEX levels and are key 
drivers behind the model’s predictions. This trend is observed consis
tently across all models, highlighting the central role of PM10, PM2.5, and 
temperature in determining BTEX concentrations. In contrast, wind 
speed and UV index are consistently ranked as the least important fea
tures across all models, indicating their relatively limited influence on 
BTEX concentration compared to the other features. Furthermore, hu
midity is generally ranked second to last in importance, reinforcing the 
diminished significance of environmental factors such as wind speed, 
UV index, and humidity in predicting BTEX levels. The analysis of 
feature importance also reveals varying degrees of relevance for certain 
features across different models. This variability suggests that the 
models rely on different feature sets and learning patterns, which can 
impact their predictions. Understanding these relationships is crucial for 
selecting the most relevant features and optimizing the models for more 
accurate and interpretable predictions [59,66]. To enhance the inter
pretation of feature impacts on BTEX concentrations, we assessed the 

explainability of the XGBoost model—identified as the best-performing 
individual model—using SHAP values [96] (Fig. 11). The analysis 
identified PM2.5 and PM10 as the dominant predictors of elevated BTEX 
levels, aligning with their shared emission sources (e.g., traffic, indus
trial combustion) [97–99]. Lower temperatures (in the winter season) 
further amplified BTEX concentrations, likely due to temperature in
versions and atmospheric stability during the sampling period [10,100]. 
Humidity also has an approximately positive effect on increasing BTEX 
concentration, as the highest humidity and benzene concentration occur 
in the cold seasons due to reduced temperature and atmospheric sta
bility [100]. In contrast, the UV index and wind speed showed negligible 
effects on BTEX concentrations—a finding likely attributable to the 
stable atmospheric conditions during the study period, which limited 
their typical roles in photochemical degradation and pollutant disper
sion. A study conducted in Ahvaz, Iran, reported lower BTEX levels 
during summer, attributed to increased solar radiation and enhanced 
photochemical reactions [101]. However, in our study, the UV index 

Table 4 
Comparison of the proposed model’s results with those reported in related studies from the literature.

Parameters Models Train Test Ref

R2 MSE RMSE MAE MAPE R2 MSE RMSE MAE MAPE

PM2.5 ST-BPNN 0.78 - 0.0071 0.0041 - 0.78 - 0.0072 0.0041 - [92]
ST-KNN 0.94 - 0.0038 0.0081 - 0.85 - 0.0059 0.0030 -
ST-XGBOOST 0.92 - 0.0041 0.0026 - 0.87 - 0.0054 0.0031 -
ST-Stacking1 0.87 - 0.0054 0.0030 - 0.89 - 0.0051 0.0028 -
ST-Stacking2 0.88 - 0.0053 0.0031 - 0.88 - 0.0054 0.0031 -
ST-Stacking3 0.90 - 0.0049 0.0027 - 0.90 - 0.0047 0.0027 -
ST-Stacking 0.91 - 0.0046 0.0025 - 0.91 - 0.0044 0.0024 -

NO2 1-hr Ensemble 0.91 - 7.23 4.52 - 0.90 - 6.10 3.77 - [54]
3-hr Ensemble 0.86 - 8.69 5.77 - 0.85 - 7.51 4.92 -
24-hr Ensemble 0.84 - 7.55 5.43 - 0.84 - 7.38 5.27 -

PM2.5 LASSO 0.87 - 22.68 - 22.68 ​ - 28.37 - 16.67 [59]
Adaboost 0.91 - 19.21 - 19.07 ​ - 34 - 21.58
XGBoost 0.90 - 20.444 - 12.75 ​ - 26.81 - 16.96
GA-MLP 0.88 - 22.04 - 28.50 ​ - 25.45 - 17.81
SVR 0.91 - 19.29 - 25.96 ​ - 27.95 - 18.92
Ensemble 0.90 - 20.72 - 30.06 ​ - 23.69 - 14.43

BTEX XGBoost 0.999 0.116 0.340 0.163 1.66 0.927 2.4 1.54 2.40 32.78 This Study
CatBoost 0.998 0.532 0.729 0.570 11.20 0.92 3.0 1.74 3.04 36.75
AdaBoost 0.991 1.66 1.28 0.833 15.55 0.894 3.2 1.8 3.262 35.21
Extra Trees 1 ~ 0 ~ 0 ~ 0 ~ 0 0.894 3.0 1.73 3.013 42.57
MLs-Stacked-Extra Trees 1 ~ 0 ~ 0 ~ 0 ~ 0 0.998 0.42 0.64 0.420 3.89

Fig. 9. Contribution of individual model predictions (XGBoost, AdaBoost, CatBoost, Extra Trees) to the MLs-Stacked-Extra Trees model and their impact on pre
dictive accuracy.
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had a minimal impact on BTEX reduction, which can be explained by 
geographical differences. Ahvaz, located in the southernmost part of 
Iran near the Persian Gulf, experiences significantly higher temperatures 
than Maragheh, a city with a mountainous climate in the country’s 
northwest. These contrasting conditions suggest that, in our study area, 
BTEX variability is primarily driven by particulate emissions and tem
perature, while meteorological factors such as wind and UV radiation 
play a secondary role under stagnant air conditions.

4. Conclusion

In conclusion, this study effectively demonstrates the capability of 
machine learning models, particularly the MLs-Stacked-Extra Trees 
ensemble, in predicting BTEX concentrations. By utilizing a diverse set 
of models, including XGBoost, CatBoost, AdaBoost, Extra Trees, and the 
stacked ensemble approach, we were able to capture complex relation
ships within the data, significantly enhancing predictive accuracy. 
Through a two-part feature importance analysis, we gained valuable 
insights into the contributions of individual predictors, such as PM10, 
PM2.5, humidity, temperature, wind speed, and UV index, while also 

Fig. 10. Contribution of input features in the first-level machine learning models developed.

Fig. 11. SHAP value analysis of the XGBoost model for BTEX concentration prediction, highlighting PM2.5, PM10, and temperature as dominant drivers, with 
negligible effects from wind speed and UV index under stable air condition.
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highlighting the importance of model predictions within the stacked 
ensemble. Our approach not only outperforms individual models but 
also offers a comprehensive framework for addressing similar environ
mental prediction tasks. The iterative hyperparameter tuning process 
ensured that each model was optimized for peak performance, 
bolstering the robustness of the final predictions. These findings un
derscore the potential of advanced ensemble learning techniques in 
tackling complex environmental monitoring challenges, while empha
sizing the importance of careful model selection and feature analysis to 
optimize predictive accuracy. Our machine learning models for BTEX 
prediction present valuable tools for informing environmental policy 
and protecting public health. By accurately forecasting pollution hot
spots and peak exposure periods, these models can support targeted air 
quality regulations, optimize the placement of monitoring stations, and 
guide urban planning efforts aimed at reducing community health risks. 
These findings are especially important for safeguarding vulnerable 
populations residing near industrial zones or high-traffic roadways, 
where chronic BTEX exposure is associated with elevated risks of cancer 
and respiratory diseases.

However, this study has several limitations that warrant consider
ation. First, financial and time constraints limited the number of sam
pling stations and the duration of data collection, restricting broader 
temporal and spatial analysis. Second, the performance of the machine 
learning models is inherently dependent on the quality and availability 
of the input data, which may affect the robustness of the results. Addi
tionally, budgetary limitations constrained further data collection and 
model refinement, potentially affecting the generalizability and per
formance of the conclusions.

Despite these limitations, the study offers practical pathways for 
advancing predictive modeling in environmental health. Future 
research should consider: (1) integrating higher-resolution environ
mental and socioeconomic datasets to improve model accuracy, along
side the use of feature selection techniques such as Recursive Feature 
Elimination (RFE) or regularization methods like Lasso to prevent 
overfitting; (2) developing hybrid models that combine physical and 
statistical approaches to enhance both performance and interpretability; 
and (3) conducting rigorous cross-regional validations to ensure the 
applicability of findings across diverse geographic settings.

The models developed here show strong potential for integration into 
real-time monitoring systems. However, their implementation should 
strike a balance between predictive accuracy, computational efficiency, 
and interpretability. Future efforts should also focus on establishing 
guidelines for selecting context-appropriate models and exploring vari
able interactions through advanced techniques to produce more robust 
and actionable environmental insights.
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