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ARTICLE INFO ABSTRACT

Keywords: BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) compounds are prominent air pollutants with severe im-

BTEX plications for human health. Prolonged exposure to these volatile organic compounds (VOCs) has been associated

If:‘/[ir ‘}11"131“13’ ) with respiratory problems, cancer, and neurological disorders. Consequently, accurate prediction of their con-
Stzzkilr[:; carning centrations is vital for safeguarding public health and ensuring environmental safety. In this study, we introduce

the MLs (XGBRegressor, AdaBoostRegressor, ExtraTreesRegressor, and CatBoost)-Stacked-Extra Trees ensemble,
an innovative machine learning approach to predict BTEX concentrations. The initial model selection process
employed the LazyRegressor library, which efficiently evaluates a wide array of regression models and provides
essential performance metrics. Based on R-squared values, the top-performing models identified were XGBRe-
gressor, AdaBoostRegressor, and ExtraTreesRegressor. To further optimize the stacking ensemble, CatBoost, a
high-performing model not included in LazyRegressor, was incorporated. A thorough feature analysis identified
key predictors influencing BTEX concentrations, including PM;, PM3 5, humidity, temperature, wind speed, and
UV index. Additionally, the contributions of each model within the ensemble were assessed, highlighting the
advantages of integrating predictions from multiple models to enhance accuracy. Our findings indicate that the
MLs-Stacked-Extra Trees ensemble significantly outperforms individual models, achieving R? values of 1.0 and
0.998 for training and testing datasets, respectively. This research underscores the potential of advanced ma-
chine learning techniques to monitor air quality and guide policy decisions aimed at mitigating health risks
associated with VOCs exposure.

Feature importance
Public health

1. Introduction released into the atmosphere from sources such as fossil fuel combus-

tion, motor vehicle emissions, industrial activities, and the use of

Air pollution has emerged as a critical global issue due to its detri-
mental impacts on human health and the environment [1-3]. Ambient
air pollution comprises particulate matter (PM), various gases, and
organic and inorganic compounds [4]. Among these pollutants, volatile
organic compounds (VOCs) represent a significant category prevalent in
urban and industrial areas [5]. Notably, BTEX compounds—Benzene,
Toluene, Ethylbenzene, and Xylene—are of particular concern due to
their high volatility and toxicity [6,7]. BTEX compounds are routinely
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organic solvents [8,9]. The US Environmental Protection Agency
(USEPA) classifies BTEX chemicals as hazardous air pollutants [10,11].
Exposure to BTEX via inhalation is linked to an elevated risk of cancer
and adverse effects on the central nervous system (CNS), respiratory
system, kidneys, liver, and reproductive system [8]. Given the critical
importance of monitoring and managing air quality, accurately pre-
dicting BTEX concentrations is essential for protecting public health and
advancing environmental management efforts.
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Predicting air pollution is essential for maintaining environmental
health, protecting public health, ensuring regulatory compliance, and
supporting informed decision-making at individual, community, and
governmental levels. It serves as a proactive measure to mitigate the
detrimental effects of air pollution on both the environment and human
health [13]. Environmental contamination processes are inherently
complex, making direct quantification impractical. Additionally, iden-
tifying pollution sources, understanding their propagation and distri-
bution patterns, and forecasting their behavior over time pose
significant challenges. Consequently, developing techniques to model
these processes and predict their evolution is essential [12].

Recent advancements in machine learning (ML) techniques have
revolutionized environmental monitoring [14,15]. These algorithms are
highly effective at predicting complex, nonlinear relationships within
large datasets, which traditional statistical methods often struggle to
overcome. In recent years, various ML models have been employed to
forecast air pollutant concentrations using data from air quality moni-
toring stations and meteorological conditions [14,16,17]. The applica-
tion of ML extends beyond predictive modeling to include the
identification of key factors influencing air pollutant emissions [18,19].
In addition to emissions from diverse sources, meteorological parame-
ters and their interactions significantly affect pollutant levels. Variables
such as temperature, humidity, wind speed, atmospheric stability, and
solar radiation play a critical role in the dispersion and dilution of air
pollutants [10,16].

Traditional forecasting methods often struggle with inconsistencies
due to the complex and nonlinear nature of air pollutants. In contrast,
artificial intelligence (AI) and ML techniques have recently emerged as
powerful tools for improving predictive accuracy in this field. These
methods are notable for their adaptive learning capabilities, high pre-
cision, and ability to handle high-dimensional datasets effectively. ML
techniques are particularly well-suited for uncovering intricate re-
lationships and resolving multicollinearity issues among variables.
Additionally, ML enables the quantitative assessment of pollution source
impacts and facilitates monitoring within complex relational frame-
works [16,20,21]. ML techniques generally outperform traditional sta-
tistical models in addressing nonlinear problems. As data-driven
approaches, ML models are highly effective at uncovering underlying
relationships between inputs and outputs [22,23]. They have been
extensively applied to predict atmospheric pollutant concentrations at
both regional and global scales [20,24,25].

In recent years, numerous algorithms have been employed for pre-
dicting air pollutant concentrations, including Artificial neural network
(ANN) [26,27], Support Vector Machine (SVM) [28,29], gradient-based
optimizer (GBO) [30] convolutional neural network (CNN) [31], MLR
[32,33], adaptive teaching-learning-based optimization and differential
evolution (ATLDE) [34], Adaptive neuro fuzzy inference system (ANFIS)
[32,35], Random forest (RF) [36-39], Decision Tree (DT) [40,41],
Category Boosting (Catboost) [42,43], eXtreme Gradient Boosting
(XGboost) [43-45], Adaptive Boosting (Adaboost) [46-48], Long
Short-Term Memory (LSTM) [49,50] and hybrid models [51-53]. One
study employed a CNN-based machine learning model integrated with
absorption spectroscopic gas sensing technology to simultaneously
measure BTEX concentrations. The results demonstrated an R-squared
value greater than 0.96 for benzene and over 0.99 for toluene, ethyl-
benzene, and xylene, highlighting the model’s strong predictive capa-
bility for BTEX levels [31].

However, the proliferation of modeling approaches presents a sig-
nificant methodological challenge: the selection of optimal models often
remains arbitrary, frequently based on researcher preference or limited
comparative analyses. This study addresses this gap by employing
LazyRegressor, a tool that facilitates statistically grounded model se-
lection through the automated evaluation of numerous algorithms under
standardized conditions. Unlike conventional ad hoc comparisons,
LazyRegressor: (1) systematically assesses predictive consistency across
multiple validation folds, (2) objectively ranks models based on their
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ability to capture relationships between pollutants and predictors, and
(3) mitigates selection bias by exhaustively testing over 40 regression
algorithms. This data-driven approach is especially valuable in envi-
ronmental applications, where different algorithms may capture distinct
facets of atmospheric behavior—for example, ANNs for modeling non-
linearities and tree-based methods for capturing complex feature
interactions.

Due to the complicated nonlinear relationships between predicted
variables and inputs, a single ML model may face challenges in
achieving high predictive accuracy [54]. Ensemble models are created
by combining multiple individual models to produce more accurate
predictions than any single model can achieve on its own. Stacked
models build on this concept by employing a meta-model that optimally
integrates the predictions of the base models. For instance, a study
conducted in Kaohsiung, Taiwan, utilized geographically weighted
regression, hybrid Kriging-land-use regression (LUR) models, and two
machine learning algorithms—RF and XGBoost—to estimate BTEX
concentrations. Initially, the hybrid Kriging-LUR models explained
37-52 % of the variance in BTEX concentrations. However, when
XGBoost was applied, the models’ explanatory power increased signif-
icantly, accounting for 61-79 % of the variance [55]. In another study
conducted in Kuwait using air quality data from 2022 to 2024, a novel
hybrid model was developed to enhance the prediction of benzene
concentrations across three industrial zones. The results demonstrated
the model’s strong predictive performance, offering valuable insights for
air quality management and pollution mitigation in industrial environ-
ments [56]. This approach is increasingly favored for regression and
classification tasks and has demonstrated notable success in predicting
contamination events by analyzing multiple quality parameters [54,57].

This study presents a novel approach to predicting BTEX air pollution
levels by integrating environmental factors and particulate matter (PM)
with advanced ML techniques. The research involves a comprehensive
comparison of various machine learning models, including XGBoost,
AdaBoost, Extra Trees, and CatBoost, and introduces a stacked ensemble
approach where Extra Trees serves as the meta-learner (MLs-Stacked-
Extra Trees Ensemble). The key innovation of this study is the imple-
mentation of the MLs-Stacked-Extra Trees Ensemble learning frame-
work, with LazyRegressor employed as an efficient and straightforward
tool for model selection. This framework enhances the predictive ac-
curacy of BTEX concentration models, which is critical for effective air
quality monitoring and public health management. Furthermore, the
study introduces a dual-layer feature importance analysis to elucidate
the contributions of environmental factors and particulate matter to
BTEX levels. It also evaluates the individual contributions of each model
within the ensemble to the overall prediction. By leveraging the
strengths of diverse models, the MLs-Stacked-Extra Trees Ensemble
approach significantly outperforms standalone models, demonstrating
its potential for tackling complex environmental prediction challenges.

The results demonstrate that the ensemble approach significantly
enhances predictive accuracy, effectively addressing the challenges
associated with environmental prediction tasks [58,59]. This study
pursues three key objectives: (1) comprehensive data characterization
through Shapiro-Wilk normality testing and Spearman correlation
analysis of environmental factors (PM1o, PMa.5, humidity, temperature,
wind speed, UV index) and BTEX concentrations, coupled with
dual-layer feature importance evaluation; (2) development of an
advanced MLs-Stacked-Extra Trees ensemble model utilizing
LazyRegressor-selected base algorithms (XGBoost, AdaBoost, Extra
Trees, CatBoost) with Extra Trees meta-learner integration; and (3)
rigorous performance validation against conventional machine learning
models using seven evaluation metrics (MAE, MSE, MAPE, MedAE, NSE,
IA, R? to demonstrate predictive superiority in BTEX concentration
estimation.
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2. Material and methods
2.1. Study area

Maragheh, the second-largest city in East Azerbaijan Province, is
located 135 km south of the provincial capital, situated on the southern
slope of Sahand Mountain. The city lies adjacent to the Sufi-Chay River
and spans an area of 26 square kilometers, with a population of
approximately 185,000 residents. Positioned at an elevation of 1,477
meters above sea level, Maragheh is located between latitudes
37°1'-37°45'N and longitudes 46°9'-46°44'E [10,60]. Fig. 1 illustrates a
map of the study area, including the locations of BTEX sampling points.

2.2. Sampling and analysis methods

Fifteen sampling locations were selected for ambient BTEX sampling,
taking into account the city’s traffic volume. These included three sta-
tions in low-traffic areas, six stations in medium-traffic areas, and six
stations in high-traffic areas. At a certain distance from the main streets
and in the urban environment, in order to quantify the actual concen-
tration to which citizens are exposed. To capture diurnal variations in
BTEX concentrations, samples were collected in two timeframes:
morning (09:00-12:00) and evening (17:00-20:00). A total of 60 sam-
ples were collected during the study period, which spanned from 3
February 2021 to 6 November 2021, covering all four seasons. Sampling
was conducted under stable atmospheric conditions, avoiding intense
wind or precipitation.

Meteorological parameters, including temperature, air pressure,
wind speed, wind direction, UV index, and relative humidity, were
recorded during the sampling period. The NIOSH 1501 method was
employed for BTEX sampling and analysis [61]. Air samples were
collected at 1.5 m above ground level using charcoal sorbent tubes (SKC

0 16 3 6 9 12
-
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Inc., England, 226-01) and a vacuum pump (SKC Inc., England) oper-
ating at a flow rate of 0.2 uL/min for two hours. PM;o and PM3 5 con-
centrations were measured using the GRIMM Model EDM180 at 1.5 m
above ground level. After sampling, the activated carbon-filled glass
tubes were transported to the laboratory for analysis using gas chro-
matography with a flame ionization detector (GC-FID). Additional de-
tails regarding sample analysis are provided in our previous study [10].

2.3. Model selection, hyperparameter tuning, and stacking ensemble
approach

The LazyRegressor library offers an efficient and automated
approach for evaluating a wide range of regression models. It includes
42 algorithms, spanning from basic linear models to advanced ensemble
techniques. The library quickly fits multiple models to the dataset using
default hyperparameters and generates essential performance metrics,
such as R-Squared, RMSE, and Time Taken, for each model. Based on R-
Squared values, the top-performing models identified in this study are
XGBRegressor, AdaBoostRegressor, and ExtraTreesRegressor. To further
enhance the stacking ensemble, CatBoost—a model not included in the
LazyRegressor library—was incorporated. CatBoost excels in handling
categorical variables and delivers robust predictive performance. By
integrating CatBoost with the top-performing models identified by
LazyRegressor, the ensemble harnesses the unique strengths of each
model. This approach improves generalization, reduces overfitting, and
achieves higher predictive accuracy. Literature evidence supports the
efficacy of these models in managing complex relationships and high-
dimensional data across both small and large datasets [42,62].
XGBoost and CatBoost, both gradient boosting models, are highly
effective in regression tasks due to their superior performance and
capability to handle large datasets efficiently. Additionally, they exhibit
strong adaptability when applied to smaller datasets [62,63]. AdaBoost,

Kilometers

® Sampling station

East Azerbaijan

Fig. 1. BTEX sampling points of the study area.
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an ensemble method, is utilized for its ability to enhance weak models
by iteratively adjusting the weights of misclassified data points, effec-
tively reducing bias regardless of dataset size [64,65]. Extra Trees, an
ensemble of decision trees, is incorporated for its robustness, flexibility,
and reduced susceptibility to overfitting, especially when dealing with
noisy data, making it highly suitable for both small and large datasets
[66,67]. The MLs-Stacked-Extra Trees ensemble combines the outputs of
first-level models, with Extra Trees serving as the meta-learner to
harness the strengths of individual models and improve predictive ac-
curacy. This stacking approach enables the refinement of predictions
through the meta-learner’s learning process. To optimize each model’s
performance, hyperparameters are fine-tuned using a trial-and-error
method, ensuring optimal configurations. For XGBoost, CatBoost, and
AdaBoost, key hyperparameters such as the number of estimators,
learning rate, and tree depth are adjusted to achieve a balance between
model complexity and performance [59,62,63,67]. For Extra Trees, the
tuning process emphasizes optimizing the number of trees, maximum
depth, and the number of features considered for splitting [66,67].
Additionally, the stacking ensemble model undergoes optimization of its
meta-learner to ensure the most effective combination of predictions
from the first-level models [63]. Hyperparameter tuning is conducted
iteratively, exploring various configurations to determine the optimal
set that enhances predictive accuracy and robustness [68,69]. Fig. 2
presents the methodology employed in this study for developing pre-
dictive models, providing a detailed overview of the key steps involved
in model training, evaluation, and optimization. This approach is
designed to ensure the production of accurate, reliable, and robust
predictions for BTEX air pollution levels based on environmental factors
and particulate matter data. In this study, the dataset was randomly split
into training (80 %) and testing (20 %) subsets, ensuring statistically
adequate sample sizes for both model development and independent
validation.

2.4. Performance evaluation metrics for regression models

This study utilizes a comprehensive set of performance metrics to
rigorously evaluate the regression models (Table 1). The Mean Absolute
Error (MAE) offers a straightforward measure of prediction accuracy by
calculating the average of absolute differences between observed and
predicted values. The Mean Squared Error (MSE), which emphasizes

First level -MLs
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Table 1
Summary of performance metrics and their formulas used in the analysis.

Mathematical Formula

MAE = (1/n)+> " lyi— ¥
MSE = (1/n) > " (vi-51)*

Metric

Mean Absolute Error

Mean Squared Error

M Absol P, E i— Vi
ean Absolute Percentage Error MAPE = (1 /n) « Z;l Yi=3i . 100
= i
Median Absolute Error MedAE = median(|y; — ¥i|)
Nash-Sutcliffe Efficiency n _5.)2
NSE=1 — (72‘:1 i {‘)2)
YL (i-y)
Index of Agreement A
A=1- — 21:1(3’1 YxA) —
2 (lyi— 91+ 1 ¥i-9D)
- ~\2
R-Squared RZ—1 S (- i)
=\2
i (Yi*Y>

larger discrepancies, provides insights into the scale of prediction errors.
To express model accuracy in relative terms, the Mean Absolute Per-
centage Error (MAPE) calculates the average error as a percentage,
making it particularly useful for comparative analyses. The Median
Absolute Error (MedAE) serves as a robust metric by focusing on the
median of absolute errors, thereby reducing sensitivity to outliers. The
Nash-Sutcliffe Efficiency (NSE) evaluates the model’s explanatory
power by comparing the variance captured by the model to the total
variance, with higher values indicating superior performance. Addi-
tionally, the Index of Agreement (IA) assesses the alignment between
observed and predicted values, with values closer to 1 reflecting stron-
ger agreement [70,71].

2.5. Feature analysis

Feature analysis is a crucial aspect of machine learning, as it allows
researchers to assess the impact and importance of input variables on
model predictions [51,67,72]. By quantifying the contribution of each
feature, this analysis offers valuable insights into the relationships be-
tween predictors and the target variable, enhancing the understanding
of the underlying data dynamics [73,74]. This study conducts feature
analysis in two stages. The first stage focuses on the primary pre-
dictors—PMjo, PMy 5, humidity, temperature, wind speed, UV index,
and BTEX—evaluating their individual contributions to the predictive

Randomly LazyReg Model Selection
partitioned:
80:20 ratio
‘ AdaBoost
Dataset XGBoost

Extra Trees

AdaBoost; CatBoost
XGBoost; Extra Trees

80% For
Training

Models
Performance
assessment

20% For

Stacked-Extra Trees

Inputs

Validation

i

Stacked-Extra Trees

Fig. 2. Flowchart illustrating the methodology for model development, highlighting the key steps in training, evaluation, and optimization to achieve accurate and

robust predictions.
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performance of the base models. The second stage analyzes the
MLs-Stacked-Extra Trees model to assess the importance of each base
model’s predictions, demonstrating how the ensemble approach en-
hances overall accuracy by leveraging the strengths of these models.
This dual approach offers a comprehensive understanding of feature
importance at both the input and model-output levels [58,59].

3. Results and discussion
3.1. Analysis of descriptive statistics and The Shapiro-Wilk test

Table 2 presents a detailed summary of the descriptive statistics for
key environmental variables in the dataset, including PM;o, PM> s, hu-
midity, temperature, wind speed, UV index, and BTEX, measured across
60 observations. PM; has a mean of 41.49 and a standard deviation of
11.6, reflecting notable variability around its average. Its slightly posi-
tive skewness (1.07) suggests a longer tail on the right side of the dis-
tribution, while a kurtosis of 2.27 indicates a relatively peaked
distribution compared to the normal curve. Similarly, PM; 5 exhibits a
mean of 18.77, with lower skewness (0.6) indicating a less pronounced
right tail. Humidity and temperature both display negative skewness
(-0.18 and -0.17, respectively), indicating a concentration of higher
values within their ranges. Their kurtosis values suggest platykurtic
distributions, characterized by flatter shapes compared to the normal
distribution. Wind speed and UV index approximate normal distribu-
tions, as evidenced by low skewness and moderate kurtosis, highlighting
the relative consistency of their values. In contrast, BTEX shows the
highest mean (13.21) and a substantial standard deviation (12.73),
coupled with pronounced positive skewness (2.33), pointing to a right-
skewed distribution with potential high-value outliers. These statistical
insights provide a deeper understanding of the variability and distri-
bution patterns of these environmental variables.

The Shapiro-Wilk test, a statistical method used to evaluate the
normality of a dataset, produces a statistic ranging from O to 1, where
values closer to 1 indicate a higher likelihood of normality. This statistic,
along with the p-value, determines whether the data significantly de-
viates from a normal distribution. The test results reveal that most
variables in the dataset do not conform to a normal distribution. For
PM;, the statistic is 0.932 with a p-value of 0.0024, indicating non-
normality. Conversely, PMj 5 has a statistic of 0.973 and a p-value of
0.1966, suggesting normality. The humidity variable shows a statistic of
0.850 and a p-value of 2.98 x 107°, confirming non-normality, while
temperature has a statistic of 0.814 and an extremely low p-value of 2.99
x 107, also indicating non-normality. Similarly, wind Speed (statistic:
0.904, p-value: 0.00019) and UV Index (statistic: 0.815, p-value: 3.2 x
1077) fail the normality test. Finally, BTEX exhibits the most significant
deviation from normality, with a statistic of 0.763 and a p-value of 1.82
x 107, In summary, except for PM; 5, which aligns with a normal dis-
tribution, all other variables—PM;j(, humidity, temperature, wind
Speed, UV Index, and BTEX—deviate significantly from normality.
These findings highlight the need to employ non-parametric methods for
subsequent analyses.
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3.2. Spearman correlation analysis (non-parametric method)

Given that most variables in the dataset were not normally distrib-
uted, Spearman correlation analysis was employed (Fig. 3). Spearman’s
rank correlation is a non-parametric method that evaluates the strength
and direction of monotonic relationships between two variables. Unlike
Pearson’s correlation, which assumes normality, Spearman’s correlation
assesses associations based on data ranks, making it more robust for non-
normally distributed variables [75,76]. The Spearman correlation ma-
trix reveals a complex network of relationships among the variables
PM;, PMa 5, humidity, temperature, wind speed, UV index, and BTEX.
Notably, strong positive correlations were observed between BTEX and
particulate matter, with correlation coefficients of 0.77 for PM;o and
0.75 for PMy 5. These results suggest co-emission from shared sources,
such as combustion processes, vehicular emissions, and industrial ac-
tivities. These findings are consistent with those reported in similar
studies [77,78].

These findings indicate that both fine and coarse particulate matter
significantly influence BTEX concentrations [10,79-81]. Humidity
shows a moderate positive correlation with BTEX (0.19), suggesting that
higher humidity levels may elevate BTEX concentrations through
mechanisms such as aerosol adsorption or reduced dispersion under
stagnant air conditions [82,83]. Conversely, temperature exhibits a
weak negative correlation with BTEX (-0.18), which may be attributed
to increased solar radiation, the production of hydroxyl (OH) radicals,
and the photochemical breakdown of VOCs during warmer seasons [10,
84-86]. During colder seasons, factors such as low wind speeds, atmo-
spheric inversions, emissions from home heating systems, and reduced
mixing heights contribute to air stability and hinder the dispersion of
pollutants, potentially leading to higher BTEX concentrations [85,87].
Wind speed shows a weak positive correlation with BTEX (0.10), indi-
cating that increased air movement has minimal impact on localized
concentrations [78,80,82,83]. In contrast, the weak negative correlation
with the UV index (-0.29) underscores the role of photochemical re-
actions, where greater solar radiation promotes the breakdown of BTEX
compounds, thereby reducing their atmospheric concentrations [10,64].

3.3. Model selection and evaluation of machine learning models

Fig. 4 illustrates the models selected using LazyRegressor, including
XGBoost, AdaBoost, and ExtraTrees, which were chosen based on their
R-squared values. LazyRegressor streamlines the model selection pro-
cess by automatically evaluating multiple regression models and iden-
tifying the top performers, reducing the need for manual
hyperparameter tuning. Additionally, CatBoost was included to further
improve model performance. The evaluation of these machine learning
models reveals notable differences in their predictive capabilities during
the training and testing phases [70,71] (Table 3). XGBoost demonstrates
exceptional training performance, with minimal errors (MAE: 0.163,
MSE: 0.116, MAPE: 1.66) and near-perfect NSE and IA values (0.999). It
also maintains strong generalization during testing, achieving MAE:
2.40, MSE: 8.27, MAPE: 32.78, with high NSE (0.904) and IA (0.977).
CatBoost performs robustly during training, showing slightly higher
errors compared to XGBoost (MAE: 0.570, MSE: 0.532, MAPE: 11.20)
and strong NSE (0.997) and IA (0.999). However, it’s testing

Table 2

Descriptive statistics of input variables and BTEX concentrations in the dataset (n = sample size).
Variable n Mean Median Std Min Max Skewness Kurtosis
PM;o 60 41.49 40.82 11.6 19.5 82.24 1.07 2.27
PM; 5 60 18.77 18.46 6.42 4.17 39.5 0.6 0.86
Humidity 60 29.1 30.5 13.75 8 46 -0.18 -1.62
Temperature 60 15.87 18.5 9.78 1 28 -0.17 -1.73
Wind Speed 60 3.28 3 0.89 2 5 0.13 -0.81
UV Index 60 2.4 2.5 1.74 0 5 -0.06 -1.66
BTEX 60 13.21 9.62 12.73 0.56 71.94 2.33 6.71
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Fig. 3. Spearman correlation matrix illustrating the relationships among variables in the dataset.
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Fig. 4. Performance evaluation of machine learning models for BTEX concentration prediction, ranked by R? scores (testing set). Models were screened using the

LazyRegressor library, with default hyperparameters.
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Table 3
Comparative performance evaluation of machine learning models for BTEX
concentration prediction.

Model/Metric MAE MSE MAPE MedAE NSE 1A
Training
XGBoost 0.163 0.116 1.66 0.064 0.999  0.999
CatBoost 0.570  0.532 11.20 0.460 0.997  0.999
AdaBoost 0.833 1.66 15.55 0.424 0.990 0.810
Extra Trees ~0 ~0 ~0 ~0 1 1
MLs-Stacked-Extra ~0 ~0 ~0 ~0 1 1
Trees
Testing
XGBoost 2.40 8.27 32.78 2.59 0.904 0.977
CatBoost 3.04 15.74 36.75 2.410 0.817  0.932
AdaBoost 3.262 16.34 35.21 2.415 0.810 0.938
Extra Trees 3.013 12.862  42.57 2.642 0.850  0.957
MLs-Stacked-Extra 0.420 0.248 3.89 0.425 0.995 0.999
Trees

performance declines, with increased errors (MAE: 3.04, MSE: 15.74,
MAPE: 36.75), indicating reduced generalization. AdaBoost delivers
acceptable training results, with moderate errors (MAE: 0.833, MSE:
1.66, MAPE: 15.55), but its testing performance reflects relatively
weaker generalization (MAE: 3.26, MSE: 16.34, MAPE: 35.21). Extra
Trees, a traditional model, and the MLs-Stacked-Extra Trees ensemble
(with Extra Trees serving as the meta-learner) achieve near-perfect
training metrics, with errors approaching zero and the highest
possible NSE and IA values, suggesting a tendency toward overfitting
[62,70,88].

During testing, Extra Trees demonstrates satisfactory but not
exceptional performance, with MAE: 3.013, MSE: 12.862, MAPE: 42.57,
NSE: 0.850, and IA: 0.957. In contrast, the MLs-Stacked-Extra Trees
ensemble significantly outperforms all other models, achieving
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exceptionally low errors (MAE: 0.420, MSE: 0.248, MAPE: 3.89) and
near-perfect NSE (0.995) and IA (0.999). This performance underscores
the ensemble’s remarkable generalization capability, despite potential
overfitting concerns during training. Among individual models, XGBoost
strikes the best balance between training and testing performance,
establishing itself as a reliable option for practical applications. Mean-
while, the superior accuracy of the stacked ensemble highlights its
suitability for high-stakes predictive tasks, provided that overfitting is
carefully addressed. The exceptionally high training scores of the base
models—XGBoost, AdaBoost, Extra Trees, and CatBoost—initially indi-
cated potential overfitting, particularly for the more complex algo-
rithms. However, the stacked ensemble model (MLs-Stacked-Extra
Trees) demonstrated significantly improved generalization, as reflected
in its superior performance on the test set. It achieved an R of 0.998,
compared to a range of 0.894-0.927 for the base models, and exhibited
lower error metrics—for instance, a MAPE that was 3.89 % lower than
that of the best-performing base model. This improvement likely results
from the ensemble’s ability to mitigate individual model biases while
harnessing their combined predictive strengths. Notably, the stacked
model consistently maintained this strong performance across valida-
tion sets, confirming its practical reliability despite the overfitting ten-
dencies of the base models.

Figs. 5 and 6 present radar plots that illustrate the performance of the
models in terms of R? for the training and test datasets, respectively. For
the training data, the R? values for XGBoost, AdaBoost, CatBoost, Extra
Trees, and MLs-Stack-Extra Trees are 0.9995, 0.991, 0.998, 1, and 1,
respectively, highlighting the exceptional performance of models like
Extra Trees and MLs-Stack-Extra Trees, both of which achieve perfect R?
values. For the test data, the R? values for XGBoost, AdaBoost, CatBoost,
Extra Trees, and MLs-Stack-Extra Trees are 0.927, 0.894, 0.920, 0.894,
and 0.998, respectively. These results underscore the robustness of MLs-

Train Data

==®== R2values Area

Extra Trees

AdaBoost

Stack-Extra Trees

Fig. 5. Radar chart comparing R? scores of machine learning models for BTEX concentration prediction (training data). Models with data points closer to the outer
circle (R?=1.0) demonstrate better predictive performance. The best-performing models will have their vertices nearest to the circumference, while weaker models

appear closer to the chart center.
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Test Data

==®== R?values Area

Extra Trees

AdaBoost

XGBoost

Stack-Extra Trees

Fig. 6. Radar chart displaying R? scores for various machine learning models on the testing data, emphasizing the comparative performance of each model.

Stack-Extra Trees, which maintains a high R® of 0.998, while other
models show a reduction in performance on unseen data. The radar plots
offer a clear visual comparison of each model’s performance across both
the training and test datasets. In the radar plot, each axis represents a
different model, and the distance from the center corresponds to the R?
value. A greater distance from the center indicates a higher R?, signi-
fying better performance [89]. Models that maintain a consistent and
large distance across both the training and test datasets, such as

Stack-Extra: Train Data

70

—— Actual
T —&— Stack-Extra

BTEX values

10

0 10 20 30 40
Data indices

MLs-Stack-Extra Trees, are considered to exhibit strong generalization
capabilities. Therefore, the radar plots serve as an intuitive tool for
comparing the performance of multiple models in a visually compact
format, effectively highlighting their strengths and weaknesses in terms
of generalization [90].

The fluctuations in actual BTEX concentrations and their predicted
values are illustrated in Fig. 7. This figure showcases the model’s ability
to replicate variations in BTEX levels, highlighting how closely the

Stack-Extra: Test Data

30 —4— Actual

@  Stack-Extra
25
20

BTEX values
o

0 2 4 6 8 10
Data indices

Fig. 7. Stacked ensemble model performance: Comparison of observed and predicted BTEX concentrations in training and test datasets.
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predictions align with the observed data. The comparison emphasizes
the model’s effectiveness in capturing the trends and patterns of BTEX
concentration fluctuations. Fig. 8 presents a scatter plot for the MLs-
Stacked-Extra Trees ensemble, displaying the model’s performance on
both the training and test datasets. The scatter plot provides a visual
representation of the model’s predictive accuracy [58,59,88,911], illus-
trating how closely the predicted values align with the actual values for
both datasets. It is important to note that the optimal hyperparameters
for the MLs-Stacked-Extra Trees ensemble, which incorporates Extra
Trees as a meta-learner, are carefully selected to enhance predictive
performance. Specifically, the ExtraTreesRegressor is configured with
200 estimators, ensuring sufficient model complexity and diversity for
robust predictions. The random _state is set to 230 to guarantee the
reproducibility of results. To promote effective feature selection while
preventing overfitting, a maximum of four features are considered at
each split (max features=4. Additionally, the model is set with no
maximum depth (max_depth=None), allowing the trees to grow until
they are pure, thus enabling the model to capture complex relationships
within the data. These hyperparameters collectively contribute to the
model’s strong generalization ability and high accuracy during both
training and testing phases [59,65,66]. The model tuning process fol-
lowed a two-stage approach. First, random_state values ranging from 1
to 500 were systematically evaluated while keeping other parameters
constant to identify the most reproducible configuration (random_state
= 230). In the second stage, the remaining hyper-
parameters—n_estimators, max_features, and max_depth—were opti-
mized using a trial-and-error strategy, adjusting each parameter
sequentially and retaining changes only when they improved validation
performance. To date, the Stacked-Extra Trees Ensemble model has not
been applied to predict BTEX concentrations. However, we have
compared the performance of our models with several related studies
using evaluation metrics such as MAE, MSE, MAPE, RMSE, and
R-squared, as shown in Table 4.

3.4. Contribution of base learners in MLs-stacked-extra trees

Fig. 9 illustrates the importance of different machine learning model
predictions as inputs to the MLs-Stacked-Extra Trees model. In this

Stack-Extra: Train Data: R2 = 1.000
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ensemble approach, the predictions of individual models, including
XGBoost, AdaBoost, CatBoost, and Extra Trees, are leveraged to enhance
overall predictive accuracy. The percentage importance of each model’s
predictions in the stacking process is as follows: XGBoost at 34 %, Extra
Trees at 25 %, CatBoost at 23 %, and AdaBoost at 18 %. These values
demonstrate the contribution of each model to the final predictions of
the ensemble. The performance scores highlight a notable improvement
in accuracy due to the combination of these models, underscoring the
effectiveness of the stacking technique in boosting predictive perfor-
mance by capitalizing on the strengths of each individual model [58,59,
91].

3.5. Contribution of input features in the first-level machine learning
models

The contribution of input features in the first-level machine learning
models is essential for understanding how individual features influence
the model’s predictions and overall performance [51,59,67]. In a
stacked ensemble model, the first-level models are responsible for
transforming raw input data into intermediate predictions, which are
then used as inputs for the meta-model [93-95]—in this case, the Extra
Trees model in the MLs-Stacked-Extra Trees ensemble. For each base
model (XGBoost, AdaBoost, CatBoost, and Extra Trees), the contribution
of input features varies based on the model’s specific algorithm and
training procedure (Fig. 10). For example, in decision tree-based models
like Extra Trees, feature importance is determined by how much each
feature helps reduce impurity at each node in the decision tree [66,67].
In gradient boosting methods like XGBoost, feature importance is
assessed by the average reduction in the loss function across all trees that
utilize a given feature [59,62,67].

By analyzing feature importance in each of these first-level models,
we can gain deeper insights into the variables influencing the model’s
predictions [91,94]. Feature importance reflects the contribution of
each feature to the model’s output, offering valuable information about
the factors the model deems most relevant when making predictions
[59,62,67]. For instance, if PM;o, PM3 5, and temperature consistently
emerge as the most important features across all models (Fig. 10), it
suggests that these particulate matter concentrations, along with

Stack-Extra: Test Data: R2 = 0.998
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Fig. 8. Performance evaluation of the stacked ensemble model: Actual vs. predicted BTEX concentrations for training and test datasets. The brown line indicates

perfect prediction (y = x).
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Table 4
Comparison of the proposed model’s results with those reported in related studies from the literature.
Parameters Models Train Test Ref
R? MSE RMSE MAE MAPE R? MSE RMSE MAE MAPE
PMa, 5 ST-BPNN 0.78 - 0.0071 0.0041 - 0.78 - 0.0072 0.0041 - [92]
ST-KNN 0.94 - 0.0038 0.0081 - 0.85 - 0.0059 0.0030 -
ST-XGBOOST 0.92 - 0.0041 0.0026 - 0.87 - 0.0054 0.0031 -
ST-Stackingl 0.87 - 0.0054 0.0030 - 0.89 - 0.0051 0.0028 -
ST-Stacking2 0.88 - 0.0053 0.0031 - 0.88 - 0.0054 0.0031 -
ST-Stacking3 0.90 - 0.0049 0.0027 - 0.90 - 0.0047 0.0027 -
ST-Stacking 0.91 - 0.0046 0.0025 - 0.91 - 0.0044 0.0024 -
NO, 1-hr Ensemble 0.91 - 7.23 4.52 - 0.90 - 6.10 3.77 - [54]
3-hr Ensemble 0.86 - 8.69 5.77 - 0.85 - 7.51 4.92 -
24-hr Ensemble 0.84 - 7.55 5.43 - 0.84 - 7.38 5.27 -
PMa 5 LASSO 0.87 - 22.68 - 22.68 - 28.37 - 16.67 [59]
Adaboost 0.91 - 19.21 - 19.07 - 34 - 21.58
XGBoost 0.90 - 20.444 - 12.75 - 26.81 - 16.96
GA-MLP 0.88 - 22.04 - 28.50 - 25.45 - 17.81
SVR 0.91 - 19.29 - 25.96 - 27.95 - 18.92
Ensemble 0.90 - 20.72 - 30.06 - 23.69 - 14.43
BTEX XGBoost 0.999 0.116 0.340 0.163 1.66 0.927 2.4 1.54 2.40 32.78 This Study
CatBoost 0.998 0.532 0.729 0.570 11.20 0.92 3.0 1.74 3.04 36.75
AdaBoost 0.991 1.66 1.28 0.833 15.55 0.894 3.2 1.8 3.262 35.21
Extra Trees 1 ~0 ~0 ~0 ~0 0.894 3.0 1.73 3.013 42.57
MLs-Stacked-Extra Trees 1 ~0 ~0 ~0 ~0 0.998 0.42 0.64 0.420 3.89
CatBoost XGBosst Xtra Trees

| 34% | 25%

Fig. 9. Contribution of individual model predictions (XGBoost, AdaBoost, CatBoost, Extra Trees) to the MLs-Stacked-Extra Trees model and their impact on pre-

dictive accuracy.

temperature, are strongly associated with BTEX levels and are key
drivers behind the model’s predictions. This trend is observed consis-
tently across all models, highlighting the central role of PM; o, PM3 5, and
temperature in determining BTEX concentrations. In contrast, wind
speed and UV index are consistently ranked as the least important fea-
tures across all models, indicating their relatively limited influence on
BTEX concentration compared to the other features. Furthermore, hu-
midity is generally ranked second to last in importance, reinforcing the
diminished significance of environmental factors such as wind speed,
UV index, and humidity in predicting BTEX levels. The analysis of
feature importance also reveals varying degrees of relevance for certain
features across different models. This variability suggests that the
models rely on different feature sets and learning patterns, which can
impact their predictions. Understanding these relationships is crucial for
selecting the most relevant features and optimizing the models for more
accurate and interpretable predictions [59,66]. To enhance the inter-
pretation of feature impacts on BTEX concentrations, we assessed the
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explainability of the XGBoost model—identified as the best-performing
individual model—using SHAP values [96] (Fig. 11). The analysis
identified PM; 5 and PM; as the dominant predictors of elevated BTEX
levels, aligning with their shared emission sources (e.g., traffic, indus-
trial combustion) [97-99]. Lower temperatures (in the winter season)
further amplified BTEX concentrations, likely due to temperature in-
versions and atmospheric stability during the sampling period [10,100].
Humidity also has an approximately positive effect on increasing BTEX
concentration, as the highest humidity and benzene concentration occur
in the cold seasons due to reduced temperature and atmospheric sta-
bility [100]. In contrast, the UV index and wind speed showed negligible
effects on BTEX concentrations—a finding likely attributable to the
stable atmospheric conditions during the study period, which limited
their typical roles in photochemical degradation and pollutant disper-
sion. A study conducted in Ahvaz, Iran, reported lower BTEX levels
during summer, attributed to increased solar radiation and enhanced
photochemical reactions [101]. However, in our study, the UV index
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Fig. 10. Contribution of input features in the first-level machine learning models developed.
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Fig. 11. SHAP value analysis of the XGBoost model for BTEX concentration prediction, highlighting PM, 5, PM;, and temperature as dominant drivers, with

negligible effects from wind speed and UV index under stable air condition.

had a minimal impact on BTEX reduction, which can be explained by
geographical differences. Ahvaz, located in the southernmost part of
Iran near the Persian Gulf, experiences significantly higher temperatures
than Maragheh, a city with a mountainous climate in the country’s
northwest. These contrasting conditions suggest that, in our study area,
BTEX variability is primarily driven by particulate emissions and tem-
perature, while meteorological factors such as wind and UV radiation
play a secondary role under stagnant air conditions.
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4. Conclusion

In conclusion, this study effectively demonstrates the capability of
machine learning models, particularly the MLs-Stacked-Extra Trees
ensemble, in predicting BTEX concentrations. By utilizing a diverse set
of models, including XGBoost, CatBoost, AdaBoost, Extra Trees, and the
stacked ensemble approach, we were able to capture complex relation-
ships within the data, significantly enhancing predictive accuracy.
Through a two-part feature importance analysis, we gained valuable
insights into the contributions of individual predictors, such as PMy,
PM; 5, humidity, temperature, wind speed, and UV index, while also
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highlighting the importance of model predictions within the stacked
ensemble. Our approach not only outperforms individual models but
also offers a comprehensive framework for addressing similar environ-
mental prediction tasks. The iterative hyperparameter tuning process
ensured that each model was optimized for peak performance,
bolstering the robustness of the final predictions. These findings un-
derscore the potential of advanced ensemble learning techniques in
tackling complex environmental monitoring challenges, while empha-
sizing the importance of careful model selection and feature analysis to
optimize predictive accuracy. Our machine learning models for BTEX
prediction present valuable tools for informing environmental policy
and protecting public health. By accurately forecasting pollution hot-
spots and peak exposure periods, these models can support targeted air
quality regulations, optimize the placement of monitoring stations, and
guide urban planning efforts aimed at reducing community health risks.
These findings are especially important for safeguarding vulnerable
populations residing near industrial zones or high-traffic roadways,
where chronic BTEX exposure is associated with elevated risks of cancer
and respiratory diseases.

However, this study has several limitations that warrant consider-
ation. First, financial and time constraints limited the number of sam-
pling stations and the duration of data collection, restricting broader
temporal and spatial analysis. Second, the performance of the machine
learning models is inherently dependent on the quality and availability
of the input data, which may affect the robustness of the results. Addi-
tionally, budgetary limitations constrained further data collection and
model refinement, potentially affecting the generalizability and per-
formance of the conclusions.

Despite these limitations, the study offers practical pathways for
advancing predictive modeling in environmental health. Future
research should consider: (1) integrating higher-resolution environ-
mental and socioeconomic datasets to improve model accuracy, along-
side the use of feature selection techniques such as Recursive Feature
Elimination (RFE) or regularization methods like Lasso to prevent
overfitting; (2) developing hybrid models that combine physical and
statistical approaches to enhance both performance and interpretability;
and (3) conducting rigorous cross-regional validations to ensure the
applicability of findings across diverse geographic settings.

The models developed here show strong potential for integration into
real-time monitoring systems. However, their implementation should
strike a balance between predictive accuracy, computational efficiency,
and interpretability. Future efforts should also focus on establishing
guidelines for selecting context-appropriate models and exploring vari-
able interactions through advanced techniques to produce more robust
and actionable environmental insights.

CRediT authorship contribution statement

Mansour Baziar: Writing — original draft, Software, Methodology,
Formal analysis. Negar Jafari: Writing — original draft, Resources,
Methodology, Investigation. Ali Oghazyan: Writing — original draft,
Methodology. Amir Mohammadi: Writing — original draft, Visualiza-
tion, Methodology. Ali Abdolahnejad: Writing — original draft, Visu-
alization, Validation, Supervision, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization. Ali Behnami: Writing —
review & editing, Methodology, Data curation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:

Ali Abdolahnejad reports financial support was provided by Mar-
agheh University of Medical Sciences. Ali Abdolahnejad reports a rela-
tionship with Maragheh University of Medical Sciences that includes:
employment. If there are other authors, they declare that they have no
known competing financial interests or personal relationships that could

12

Results in Engineering 26 (2025) 105557
have appeared to influence the work reported in this paper.
Acknowledgments

The authors wish to express their sincere appreciation for the
financial support of Maragheh University of Medical Sciences for this
research under grant number of A-10-1328-1.

Data availability
Data will be made available on request.

References

[1] J. Awewomom, F. Dzeble, Y.D. Takyi, W.B. Ashie, E.N.Y.O. Ettey, P.E. Afua,

O. Akoto, Addressing global environmental pollution using environmental
control techniques: a focus on environmental policy and preventive
environmental management, Discov. Environ. 2 (1) (2024) 8.

B. Halder, 1. Ahmadianfar, S. Heddam, Z.H. Mussa, L. Goliatt, M.L. Tan, A.

H. Jawad, Machine learning-based country-level annual air pollutants
exploration using Sentinel-5P and Google Earth Engine, Sci. Rep. 13 (1) (2023)
7968.

G. Venkatraman, N. Giribabu, P.S. Mohan, B. Muttiah, V. Govindarajan,

M. Alagiri, S.A. Karsani, Environmental impact and human health effects of
polycyclic aromatic hydrocarbons and remedial strategies: a detailed review,
Chemosphere (2024) 141227.

A.M. Parenteau, S. Hang, J.R. Swartz, A.S. Wexler, C.E. Hostinar, Clearing the air:
A systematic review of studies on air pollution and childhood brain outcomes to
mobilize policy change, Dev. Cogn. Neurosci. (2024) 101436.

A. Zalel, D.M. Broday, Revealing source signatures in ambient BTEX
concentrations, Environ. Pollut. 156 (2) (2008) 553-562.

C.-T. Chang, B.-Y. Chen, Toxicity assessment of volatile organic compounds and
polycyclic aromatic hydrocarbons in motorcycle exhaust, J. Hazard. Mater. 153
(3) (2008) 1262-1269.

J.M.M. Mello, H.L. Brandao, A. Valério, A.A.U. de Souza, D. de Oliveira, A. da
Silva, Biodegradation of BTEX compounds from petrochemical wastewater:
kinetic and toxicity, J. Water. Process. Eng. 32 (2019) 100914.

A H. Khoshakhlagh, S. Yazdanirad, A. Ducatman, Climatic conditions and
concentrations of BTEX compounds in atmospheric media, Environ. Res. (2024)
118553.

I. Muda, M.J. Mohammadi, A. Sepahvad, A. Farhadi, R. Fadhel Obaid,

M. Taherian, M. Farhadi, Associated health risk assessment due to exposure to
BTEX compounds in fuel station workers, Rev. Environ. Health 39 (3) (2024)
435-446.

A. Behnami, N. Jafari, K.Z. Benis, F. Fanaei, A. Abdolahnejad, Spatio-temporal
variations, ozone and secondary organic aerosol formation potential, and health
risk assessment of BTEX compounds in east of Azerbaijan Province, Iran, Urban.
Clim. 47 (2023) 101360.

USEPA, Hazardous Air Pollutants, USEPA, 2019. Editor.

L.A.M. Garcia, F.S. Lasheras, P.J.G. Nieto, L.A. de Prado, A.B. Sanchez, Predicting
benzene concentration using machine learning and time series algorithms,
Mathematics 8 (12) (2020) 1-22.

V. Yadav, A.K. Yadav, V. Singh, T. Singh, Artificial neural network an innovative
approach in air pollutant prediction for environmental applications: a review,
Res. Eng. 22 (2024) 102305.

I. Gryech, C. Asaad, M. Ghogho, A. Kobbane, Applications of machine learning &
Internet of Things for outdoor air pollution monitoring and prediction: a
systematic literature review, Eng. Appl. Artif. Intell. 137 (2024) 109182.

R. Yan, J. Liao, J. Yang, W. Sun, M. Nong, F. Li, Multi-hour and multi-site air
quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and
spatiotemporal clustering, Expert Syst. Appl. 169 (2021) 114513.

F. Mohammadi, H. Teiri, Y. Hajizadeh, A. Abdolahnejad, A. Ebrahimi, Prediction
of atmospheric PM2. 5 level by machine learning techniques in Isfahan, Iran, Sci.
Rep. 14 (1) (2024) 2109.

G. Suthar, N. Kaul, S. Khandelwal, S. Singh, Predicting land surface temperature
and examining its relationship with air pollution and urban parameters in
Bengaluru: a machine learning approach, Urban. Clim. 53 (2024) 101830.

A.-L. Balogun, A. Tella, L. Baloo, N. Adebisi, A review of the inter-correlation of
climate change, air pollution and urban sustainability using novel machine
learning algorithms and spatial information science, Urban. Clim. 40 (2021)
100989.

D.B. Olawade, O.Z. Wada, A.O. Ige, B.I. Egbewole, A. Olojo, B.I. Oladapo,
Artificial intelligence in environmental monitoring: advancements, challenges,
and future directions, Hygiene Environ. Health Adv. 12 (2024) 100114.
Z.Peng, B. Zhang, D. Wang, X. Niu, J. Sun, H. Xu, Z. Shen, Application of machine
learning in atmospheric pollution research: a state-of-art review, Sci. Total
Environ. 910 (2024) 168588.

L. Zhao, Z. Li, L. Qu, A novel machine learning-based artificial intelligence
method for predicting the air pollution index PM2. 5, J. Clean. Prod. 468 (2024)
143042.

[2]

[3

=

[4]

[5

—

[6]

[71

(81

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]


http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0001
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0001
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0001
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0001
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0002
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0002
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0002
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0002
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0003
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0003
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0003
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0003
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0004
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0004
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0004
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0005
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0005
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0006
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0006
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0006
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0007
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0007
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0007
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0008
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0008
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0008
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0009
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0009
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0009
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0009
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0010
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0010
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0010
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0010
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0011
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0012
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0012
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0012
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0013
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0013
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0013
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0014
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0014
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0014
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0015
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0015
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0015
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0016
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0016
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0016
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0017
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0017
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0017
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0018
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0018
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0018
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0018
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0019
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0019
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0019
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0020
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0020
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0020
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0021
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0021
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0021

M. Baziar et al.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

M. Baziar, A. Behnami, N. Jafari, A. Mohammadi, A. Abdolahnejad, Machine
learning-based Monte Carlo hyperparameter optimization for THMs prediction in
urban water distribution networks, J. Water. Process. Eng. 73 (2025) 107683.
M. Baziar, M. Yousefi, V. Oskoei, A. Makhdoomi, R. Abdollahzadeh, A. Dehghan,
Machine learning-based prediction of heating values in municipal solid waste,
Sci. Rep. 15 (1) (2025) 14589.

S. Chadalavada, O. Faust, M. Salvi, S. Seoni, N. Raj, U. Raghavendra, R. Acharya,
Application of artificial intelligence in air pollution monitoring and forecasting: a
systematic review, Environ. Model. Softw. 185 (2025) 106312.

A. Masood, K. Ahmad, A review on emerging artificial intelligence (AI)
techniques for air pollution forecasting: fundamentals, application and
performance, J. Clean. Prod. 322 (2021) 129072.

A.N. Al-Dabbous, P. Kumar, A.R. Khan, Prediction of airborne nanoparticles at
roadside location using a feed—forward artificial neural network, Atmos. Pollut.
Res. 8 (3) (2017) 446-454.

H. Maleki, A. Sorooshian, G. Goudarzi, Z. Baboli, Y.Tahmasebi Birgani,

M. Rahmati, Air pollution prediction by using an artificial neural network model,
Clean. Technol. Environ. Policy. 21 (6) (2019) 1341-1352.

K. de Hoogh, H. Héritier, M. Stafoggia, N. Kiinzli, I. Kloog, Modelling daily PM2.5
concentrations at high spatio-temporal resolution across Switzerland, Environ.
Pollut. 233 (2018) 1147-1154.

N.M. Eldakhly, M. Aboul-Ela, A. Abdalla, A novel approach of weighted support
vector machine with applied chance theory for forecasting air pollution
phenomenon in Egypt, Int. J. Comput. Intell. Appl. 17 (01) (2018) 1850001.

A. Samadi-Koucheksaraee, S. Shirvani-Hosseini, I. Ahmadianfar, B. Gharabaghi,
Optimization algorithms surpassing metaphor, in Computational intelligence for
water and environmental sciences, Springer, 2022, pp. 3-33.

M. Hashemitaheri, E. Ebrahimi, G. de Silva, H. Attariani, Optical sensor for BTEX
detection: integrating machine learning for enhanced sensing, Adv. Sens. Energy
Mater. 3 (3) (2024) 100114.

F. Karimi, J. Amanollahi, M. Reisi, M. Darand, Prediction of air quality using
vertical atmospheric condition and developing hybrid models, Adv. Space Res. 72
(4) (2023) 1172-1182.

S.R. Shams, S. Kalantary, A. Jahani, S.M. Parsa Shams, B. Kalantari, D. Singh,
Y. Choi, Assessing the effectiveness of artificial neural networks (ANN) and
multiple linear regressions (MLR) in forcasting AQI and PM10 and evaluating
health impacts through AirQ+ (case study: Tehran), Environ. Pollut. 338 (2023)
122623.

H. Tao, A.O. Al-Sulttani, M.A. Saad, I. Ahmadianfar, L. Goliatt, S.S.U.H. Kazmi, Z.
M. Yaseen, Optimized ensemble deep random vector functional link with nature
inspired algorithm and boruta feature selection: multi-site intelligent model for
air quality index forecasting, Process Saf. Environ. Protect. 191 (2024)
1737-1760.

S. Shirvani-Hosseini, A. Samadi-Koucheksaraee, I. Ahmadianfar, B. Gharabaghi,
Data mining methods for modeling in water science, in Computational
intelligence for water and environmental sciences, Springer, 2022, pp. 157-178.
A. Analitis, B. Barratt, D. Green, A. Beddows, E. Samoli, J. Schwartz,

K. Katsouyanni, Prediction of PM2.5 concentrations at the locations of monitoring
sites measuring PM10 and NOx, using generalized additive models and machine
learning methods: a case study in London, Atmos. Environ. 240 (2020) 117757.
S. Araki, M. Shima, K. Yamamoto, Spatiotemporal land use random forest model
for estimating metropolitan NO2 exposure in Japan, Sci. Total Environ. 634
(2018) 1269-1277.

W. Ding, X. Qie, Prediction of air pollutant concentrations via RANDOM forest
regressor coupled with uncertainty analysis-A case study in Ningxia, Atmosphere
13 (6) (2022) 960.

C. Silibello, G. Carlino, M. Stafoggia, C. Gariazzo, S. Finardi, N. Pepe, G. Viegi,
Spatial-temporal prediction of ambient nitrogen dioxide and ozone levels over
Italy using a Random Forest model for population exposure assessment, Air Qual.,
Atmos. Health 14 (2021) 817-829.

Y. Gao, Z. Wang, C.-Y. Li, T. Zheng, Z.-R. Peng, Assessing neighborhood variations
in ozone and PM2. 5 concentrations using decision tree method, Build. Environ.
188 (2021) 107479.

W.N. Shaziayani, A.Z. Ul-Saufie, S. Mutalib, N.Mohamad Noor, N.S. Zainordin,
Classification prediction of PM10 concentration using a tree-based machine
learning approach, Atmosphere (Basel) 13 (4) (2022) 538.

L. Mampitiya, N. Rathnayake, Y. Hoshino, U. Rathnayake, Forecasting PM10
levels in Sri Lanka: a comparative analysis of machine learning models PM10,
J. Hazard. Mater. Adv. 13 (2024) 100395.

G. Ravindiran, G. Hayder, K. Kanagarathinam, A. Alagumalai, C. Sonne, Air
quality prediction by machine learning models: a predictive study on the Indian
coastal city of Visakhapatnam, Chemosphere 338 (2023) 139518.

G. Ravindiran, S. Rajamanickam, K. Kanagarathinam, G. Hayder, G. Janardhan,
P. Arunkumar, S.K. Muniasamy, Impact of air pollutants on climate change and
prediction of air quality index using machine learning models, Environ. Res. 239
(2023) 117354.

Z. Wang, X. Wu, Y. Wu, A spatiotemporal XGBoost model for PM2. 5
concentration prediction and its application in Shanghai, Heliyon. 9 (2023), 12.
Z. Li, K. Gan, S. Sun, S. Wang, A new PM2. 5 concentration forecasting system
based on AdaBoost-ensemble system with deep learning approach, J. Forecast. 42
(1) (2023) 154-175.

D. Thamizhselvi, B. Kasi, K. Kamalakkannan, S. Bharath, S. Gowtham, M. Kishore,
Air quality prediction using adaboost. 2023 Intelligent Computing and Control for
Engineering and Business Systems (ICCEBS), IEEE, 2023.

13

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Results in Engineering 26 (2025) 105557

J. Wang, D. Wang, F. Zhang, C. Yoo, H. Liu, Soft sensor for predicting indoor PM2.
5 concentration in subway with adaptive boosting deep learning model,

J. Hazard. Mater. 465 (2024) 133074.

B. Zhang, Z. Wang, Y. Lu, M.-Z. Li, R. Yang, J. Pan, Z. Kou, Air pollutant diffusion
trend prediction based on deep learning for targeted season—North China as an
example, Expert Syst Appl 232 (2023) 120718.

Z. Wu, Y. Tian, M. Li, B. Wang, Y. Quan, J. Liu, Prediction of air pollutant
concentrations based on the long short-term memory neural network, J. Hazard.
Mater. 465 (2024) 133099.

S. Karimi, M. Asghari, R. Rabie, M.E. Niri, Machine learning-based white-box
prediction and correlation analysis of air pollutants in proximity to industrial
zones, Process Saf. Environ. Protect. 178 (2023) 1009-1025.

D. Wang, S. Wei, H. Luo, C. Yue, O. Grunder, A novel hybrid model for air quality
index forecasting based on two-phase decomposition technique and modified
extreme learning machine, Sci. Total Environ. 580 (2017) 719-733.

B. Wu, C. Wu, Y. Ye, C. Pei, T. Deng, Y.J. Li, D. Wu, Long-term hourly air quality
data bridging of neighboring sites using automated machine learning: a case
study in the Greater Bay area of China, Atmos. Environ. 321 (2024) 120347.

T. Peng, J. Xiong, K. Sun, S. Qian, Z. Tao, M.S. Nazir, C. Zhang, Research and
application of a novel selective stacking ensemble model based on error
compensation and parameter optimization for AQI prediction, Environ. Res. 247
(2024) 118176.

C.-Y. Hsu, Y.-T. Zeng, Y.-C. Chen, M.-J. Chen, S.-C.C. Lung, C.-D. Wu, Kriging-
based land-use regression models that use machine learning algorithms to
estimate the monthly BTEX concentration, Int. J. Environ. Res. Public Health 17
(19) (2020) 6956.

E.T. Al-Shammari, Hybrid model for benzene prediction in Kuwait’s industrial
regions, Int. J. Appl. Geospatial Res. (IJAGR) 15 (1) (2024) 1-23.

Z.Ning, S. Gao, Z. Gu, C. Ni, F. Fang, Y. Nie, C. Wang, Prediction and explanation
for ozone variability using cross-stacked ensemble learning model, Sci. Total
Environ. 935 (2024) 173382.

Y. Xie, W. Sun, M. Ren, S. Chen, Z. Huang, X. Pan, Stacking ensemble learning
models for daily runoff prediction using 1D and 2D CNNs, Expert Syst. Appl. 217
(2023) 119469.

B. Zhai, J. Chen, Development of a stacked ensemble model for forecasting and
analyzing daily average PM2.5 concentrations in Beijing, China, Sci. Total
Environ. 635 (2018) 644-658.

N. Jafari, A. Behnami, F. Ghayurdoost, A. Solimani, A. Mohammadi,

M. Pourakbar, A. Abdolahnejad, Analysis of THM formation potential in drinking
water networks: effects of network age, health risks, and seasonal variations in
northwest of Iran, Heliyon. 10 (2024), 14.

NIOSH, Method 1501: Niosh Manual of Analytical methods (Mam). 2003: USA.
D.H. Djarum, Z. Ahmad, J. Zhang, Reduced Bayesian optimized stacked regressor
(RBOSR): a highly efficient stacked approach for improved air pollution
prediction, Appl. Soft Comput. 144 (2023) 110466.

C.-H. Yang, C.-H. Wu, K.-H. Luo, H.-C. Chang, S.-C. Wu, H.-Y. Chuang, Use of
machine learning algorithms to determine the relationship between air pollution
and cognitive impairment in Taiwan, Ecotoxicol. Environ. Saf. 284 (2024)
116885.

A. Abdellatif, H. Mubarak, S. Ahmad, T. Ahmed, G. Shafiullah, A. Hammoudeh,
H.M. Gheni, Forecasting photovoltaic power generation with a stacking ensemble
model, Sustainability. 14 (17) (2022) 11083.

H. Liu, C. Chen, Spatial air quality index prediction model based on
decomposition, adaptive boosting, and three-stage feature selection: a case study
in China, J. Clean. Prod. 265 (2020) 121777.

J. Kerckhoffs, G. Hoek, L.T. Portengen, B. Brunekreef, R.C. Vermeulen,
Performance of prediction algorithms for modeling outdoor air pollution spatial
surfaces, Environ. Sci. Technol. 53 (3) (2019) 1413-1421.

K. Ravindra, S.S. Bahadur, V. Katoch, S. Bhardwaj, M. Kaur-Sidhu, M. Gupta,

S. Mor, Application of machine learning approaches to predict the impact of
ambient air pollution on outpatient visits for acute respiratory infections, Sci.
Total Environ. 858 (2023) 159509.

F. Lautenschlager, M. Becker, K. Kobs, M. Steininger, P. Davidson, A. Krause,
A. Hotho, OpenLUR: off-the-shelf air pollution modeling with open features and
machine learning, Atmos. Environ. 233 (2020) 117535.

J.-J. Zhu, M. Yang, Z.J. Ren, Machine learning in environmental research:
common pitfalls and best practices, Environ. Sci. Technol. 57 (46) (2023)
17671-17689.

A.A.M. Ahmed, S.J.J. Jui, E. Sharma, M.H. Ahmed, N. Raj, A. Bose, An advanced
deep learning predictive model for air quality index forecasting with remote
satellite-derived hydro-climatological variables, Sci. Total Environ. 906 (2024)
167234.

D. Shakya, V. Deshpande, M.K. Goyal, M. Agarwal, PM2. 5 air pollution
prediction through deep learning using meteorological, vehicular, and emission
data: a case study of New Delhi, India, J. Clean. Prod. 427 (2023) 139278.

AK. Rad, S.-O. Razmi, M.J. Nematollahi, A. Naghipour, F. Golkar, M. Mahmoudi,
Machine learning models for predicting interactions between air pollutants in
Tehran Megacity, Iran, Alex. Eng. J. 104 (2024) 464-479.

M.J. Jiménez-Navarro, M. Martinez-Ballesteros, F. Martl’nez-AlvareZ, G. Asencio-
Cortés, Explaining deep learning models for ozone pollution prediction via
embedded feature selection, Appl. Soft Comput. 157 (2024) 111504.

S. Masmoudi, H. Elghazel, D. Taieb, O. Yazar, A. Kallel, A machine-learning
framework for predicting multiple air pollutants’ concentrations via multi-target
regression and feature selection, Sci. Total Environ. 715 (2020) 136991.


http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0022
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0022
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0022
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0023
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0023
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0023
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0024
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0024
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0024
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0025
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0025
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0025
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0026
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0026
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0026
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0027
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0027
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0027
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0028
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0028
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0028
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0029
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0029
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0029
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0030
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0030
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0030
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0031
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0031
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0031
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0032
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0032
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0032
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0033
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0033
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0033
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0033
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0033
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0034
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0034
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0034
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0034
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0034
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0035
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0035
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0035
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0036
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0036
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0036
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0036
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0037
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0037
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0037
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0038
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0038
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0038
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0039
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0039
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0039
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0039
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0040
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0040
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0040
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0041
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0041
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0041
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0042
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0042
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0042
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0043
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0043
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0043
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0044
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0044
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0044
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0044
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0045
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0045
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0046
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0046
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0046
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0047
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0047
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0047
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0048
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0048
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0048
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0049
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0049
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0049
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0050
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0050
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0050
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0051
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0051
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0051
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0052
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0052
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0052
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0053
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0053
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0053
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0054
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0054
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0054
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0054
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0055
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0055
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0055
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0055
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0056
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0056
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0057
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0057
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0057
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0058
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0058
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0058
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0059
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0059
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0059
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0060
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0060
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0060
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0060
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0062
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0062
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0062
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0063
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0063
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0063
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0063
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0064
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0064
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0064
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0065
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0065
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0065
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0066
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0066
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0066
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0067
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0067
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0067
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0067
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0068
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0068
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0068
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0069
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0069
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0069
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0070
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0070
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0070
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0070
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0071
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0071
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0071
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0072
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0072
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0072
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0073
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0073
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0073
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0074
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0074
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0074

M. Baziar et al.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

S.V. Razavi-Termeh, A. Sadeghi-Niaraki, S.-M. Choi, Effects of air pollution in
spatio-temporal modeling of asthma-prone areas using a machine learning model,
Environ. Res. 200 (2021) 111344.

H. Zhang, R. Srinivasan, X. Yang, S. Ahrentzen, E.S. Coker, A. Alwisy, Factors
influencing indoor air pollution in buildings using PCA-LMBP neural network: a
case study of a university campus, Build. Environ. 225 (2022) 109643.

F. Abbasi, H. Pasalari, J.M. Delgado-Saborit, A. Rafiee, A. Abbasi, M. Hoseini,
Characterization and risk assessment of BTEX in ambient air of a Middle Eastern
City, Process Saf. Environ. Protect. 139 (2020) 98-105.

Y. Hajizadeh, M. Mokhtari, M. Faraji, A. Mohammadi, S. Nemati, R. Ghanbari,
M. Miri, Trends of BTEX in the central urban area of Iran: a preliminary study of
photochemical ozone pollution and health risk assessment, Atmos. Pollut. Res. 9
(2) (2018) 220-229.

M.T. Latif, H.H. Abd Hamid, F. Ahamad, M.F. Khan, M.S. Mohd Nadzir,

M. Othman, N.M. Tahir, BTEX compositions and its potential health impacts in
Malaysia, Chemosphere 237 (2019) 124451.

M. Miri, M. Rostami Aghdam Shendi, H.R. Ghaffari, H. Ebrahimi Aval, E. Ahmadi,
E. Taban, A. Azari, Investigation of outdoor BTEX: concentration, variations,
sources, spatial distribution, and risk assessment, Chemosphere 163 (2016)
601-609.

J.G. Cer6n Bretén, R.M. Cer6n Breton, S. Martinez Morales, J.D. Kahl,

C. Guarnaccia, R.D.C.L. Severino, M.P. Uc Chi, Health risk assessment of the
levels of BTEX in ambient air of one urban site located in Leon, Guanajuato,
Mexico during two climatic seasons, Atmosphere (Basel) 11 (2) (2020) 165.
A.H. Khoshakhlagh, S. Yazdanirad, A. Ducatman, Climatic conditions and
concentrations of BTEX compounds in atmospheric media, Environ. Res. 251
(2024) 118553.

K.M. Mullaugh, J.M. Hamilton, G.B. Avery, J.D. Felix, R.N. Mead, J.D. Willey, R.
J. Kieber, Temporal and spatial variability of trace volatile organic compounds in
rainwater, Chemosphere 134 (2015) 203-209.

M. Kermani, A. Jonidi Jafari, M. Gholami, F. Taghizadeh, K. Masroor,

A. Abdolahnejad, F. Fanaei, Characterisation of PM2. 5-bound PAHs in outdoor
air of Karaj megacity: the effect of meteorological factors, Int. J. Environ. Anal.
Chem. 103 (14) (2023) 3290-3308.

R. Maleki, Z. Asadgol, M. Kermani, A. Jonidi Jafari, H. Arfaeinia, M. Gholami,
Monitoring BTEX compounds and asbestos fibers in the ambient air of Tehran,
Iran: seasonal variations, spatial distribution, potential sources, and risk
assessment, Int. J. Environ. Anal. Chem. 102 (16) (2022) 4220-4237.

Y. Zhang, Y. Mu, J. Liu, A. Mellouki, Levels, sources and health risks of carbonyls
and BTEX in the ambient air of Beijing, China, J. Environ. Sci. 24 (1) (2012)
124-130.

A. Masih, A.S. Lall, A. Taneja, R. Singhvi, Inhalation exposure and related health
risks of BTEX in ambient air at different microenvironments of a terai zone in
north India, Atmos. Environ. 147 (2016) 55-66.

14

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

Results in Engineering 26 (2025) 105557

E. Kalantari, H. Gholami, H. Malakooti, M. Eftekhari, P. Saneei, D. Esfandiarpour,
A.R. Nafarzadegan, Evaluating traditional versus ensemble machine learning
methods for predicting missing data of daily PM10 concentration, Atmos. Pollut.
Res. 15 (5) (2024) 102063.

S.A. Sai, S.N. Venkatesh, S. Dhanasekaran, P.A. Balaji, V. Sugumaran,

N. Lakshmaiya, P. Paramasivam, Transfer learning based fault detection for
suspension system using vibrational analysis and radar plots, Machines 11 (8)
(2023) 778.

J. Zhou, W. Huang, F. Chen, Facilitating machine learning model comparison and
explanation through a radial visualisation, Energies. (Basel) 14 (21) (2021) 7049.
M. Lu, Q. Hou, S. Qin, L. Zhou, D. Hua, X. Wang, L. Cheng, A stacking ensemble
model of various machine learning models for daily runoff forecasting, Water
(Basel) 15 (7) (2023) 1265.

L. Feng, Y. Li, Y. Wang, Q. Du, Estimating hourly and continuous ground-level
PM2. 5 concentrations using an ensemble learning algorithm: the ST-stacking
model, Atmos. Environ. 223 (2020) 117242,

M.A. Anjum and A. Alanzi, Smart Urban planning: an intelligent framework to
predict traffic using stack ensembling approach, (2024).

N.U. Khan, M.A. Shah, C. Maple, E. Ahmed, N. Asghar, Traffic flow prediction: an
intelligent scheme for forecasting traffic flow using air pollution data in smart
cities with bagging ensemble, Sustainability. 14 (7) (2022) 4164.

W. Yu, S. Li, T. Ye, R. Xu, J. Song, Y. Guo, Deep ensemble machine learning
framework for the estimation of PM 2.5 concentrations, Environ. Health Perspect.
130 (3) (2022) 037004.

A. Dehghan, V. Oskoei, T. Khajavi, M. Baziar, M. Yousefi, Machine learning-based
prediction of the C/N ratio in municipal organic waste, Environ. Technol. Innov.
37 (2025) 103977.

N. Kanjanasiranont, Assessment of BTEX, PM10, and PM2. 5 concentrations in
Nakhon Pathom, Thailand, and the health risks for security guards and copy shop
employees, Atmosphere (Basel) 16 (2) (2025) 212.

M. Kermani, H. Arfaeinia, K. Masroor, A. Abdolahnejad, F. Fanaei, A. Shahsavani,
M.H. Vahidi, Health impacts and burden of disease attributed to long-term
exposure to atmospheric PM10/PM2. 5 in Karaj, Iran: effect of meteorological
factors, Int. J. Environ. Anal. Chem. 102 (18) (2022) 6134-6150.

S.Z. Sajani, S. Marchesi, A. Trentini, D. Bacco, C. Zigola, S. Rovelli, D.M. Cavallo,
Vertical variation of PM2. 5 mass and chemical composition, particle size
distribution, NO2, and BTEX at a high rise building, Environ. Pollut. 235 (2018)
339-349.

P. Nakhjirgan, F. Fanaei, A. Jonidi Jafari, M. Gholami, A. Shahsavani,

M. Kermani, Extensive investigation of seasonal and spatial fluctuations of BTEX
in an industrial city with a health risk assessment, Sci. Rep. 14 (1) (2024) 23662.
H.D. Rad, A.A. Babaei, G. Goudarzi, K.A. Angali, Z. Ramezani, M.M. Mohammadji,
Levels and sources of BTEX in ambient air of Ahvaz metropolitan city, Air Qual.,
Atmos. Health 7 (2014) 515-524.


http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0075
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0075
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0075
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0076
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0076
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0076
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0077
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0077
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0077
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0078
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0078
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0078
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0078
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0079
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0079
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0079
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0080
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0080
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0080
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0080
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0081
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0081
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0081
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0081
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0082
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0082
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0082
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0083
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0083
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0083
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0084
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0084
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0084
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0084
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0085
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0085
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0085
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0085
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0086
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0086
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0086
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0087
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0087
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0087
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0088
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0088
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0088
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0088
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0089
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0089
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0089
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0089
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0090
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0090
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0091
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0091
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0091
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0092
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0092
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0092
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0094
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0094
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0094
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0095
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0095
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0095
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0096
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0096
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0096
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0097
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0097
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0097
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0098
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0098
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0098
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0098
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0099
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0099
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0099
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0099
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0100
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0100
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0100
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0101
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0101
http://refhub.elsevier.com/S2590-1230(25)01627-5/sbref0101

	Prediction of BTEX concentrations in the air of Southern East Azerbaijan province, Iran using ensemble machine learning and ...
	1 Introduction
	2 Material and methods
	2.1 Study area
	2.2 Sampling and analysis methods
	2.3 Model selection, hyperparameter tuning, and stacking ensemble approach
	2.4 Performance evaluation metrics for regression models
	2.5 Feature analysis

	3 Results and discussion
	3.1 Analysis of descriptive statistics and The Shapiro-Wilk test
	3.2 Spearman correlation analysis (non-parametric method)
	3.3 Model selection and evaluation of machine learning models
	3.4 Contribution of base learners in MLs-stacked-extra trees
	3.5 Contribution of input features in the first-level machine learning models

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


