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A B S T R A C T   

Information about accessibility is of great relevance for gold recovery studies. Obtaining these variables from 
machine learning models can greatly assist in quickly determining accessibility. Few studies have been published 
relating the mineralogy of the gold ore process and the application of artificial intelligence, mainly algorithms in 
predicting variables related to gold recovery and extraction. Accessibility is an important variable for under
standing the ability to recover gold from a cyanide solution, which can occur through fractures or some other 
means that provides access to the solution and consequent leaching of the gold grain. This study aims to present a 
model capable of predicting the accessibility variable using a data set with 168 characterization results from 
different ML methods, such as Linear Regression (LR), Random Forest (RF), Sequential Minimum Optimization 
for Support Vector Machine (SMOreg) and Gaussian Processes (GP). In this context, it was possible to establish 
that the random forest model performed best by presenting a coefficient of determination R2 (0.77), MAE 
(11.76), and RMSE (14.48). It was also reported from the SHAP analysis that the Au_grade, exposed_a, and 
As_grade showed the highest contribution level towards the perdition process of the model.   

1. Introduction 

Process Mineralogy is an interdisciplinary approach aimed at linking 
the study of specific aspects of the ore bodies and plant products that can 
directly help in determining the mineralogical characteristics of the ore 
bodies, the potential for recovery, and the identification of their 
behavior in face of the beneficiation process. It provides subsidies for 
metallurgists, process engineers, and geologists in mine planning, 
development, and optimization of the ore’s beneficiation process and 
hydrometallurgical operations [1–6]. 

The mineralogical characterization has benefited from the 
advancement of techniques for electronic microscopy, particularly in the 
automation of quantitative image analysis techniques (SEM-IA). This is a 
branch of mineralogy applied to the determination of quantitative 
mineralogy, mineral’s association and liberation, grain size distribution, 
particle size, particles, and their inclusions, among other characteristics 
related to their morphology. In recent years, there has been an expan
sion in the use of the quantitative analysis technique, along with the 

improvement of equipment and the development of systems coupled 
with Energy Dispersive Spectroscopy (EDS) and Image Analysis (IA). A 
great advantage of automated image analysis methods is that they allow 
faster analysis, statistical robustness with the generation of a large 
amount of data, and reliability in the results, thus minimizing the 
analysis error [7–13]. 

In gold ores, the classic concept of mineral liberation described by 
Gaudin [14], must be adapted when based on specific properties of gold 
extraction and recovery. The term “accessible” or “accessibility” is more 
adequate and means the portion accessible is directly proportional to the 
ability to extract gold from a cyanide solution via fractures or micro
fractures. The gold that can be leached or recovered is the portion of 
gold in which there is some perimeter either exposed to alkaline cyanide 
solutions, on the surface or included in particles whose gold is accessible 
by microfractures or some medium in which the solution can flow [15]. 
Although Fig. 1A shows a free gold grain, Fig. 1B displays in the same 
mineral a locked gold grain and gold that may be extracted by fracture 
for the solution percolation, making it accessible. Different percentages 
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of accessibility can occur. In the two-dimensional representation, it is 
evident that the gold may be extracted by paths located in another part 
of the grain not visualized in the 2D image. Thus, information on gold 
accessibility by image analysis may be undersized or underestimated 
due to technique limitations. 

The classic definition of mineral liberation shows that one of the 
species minerals in a population of different mineral species consists of 
the percentage of mineral, which occurs as free particles concerning the 
total amount of mineral in mixed or free particles. The association 
corresponds to the percentage of the mineral included in two or more 
phases about the total. In Fig. 2, different classes of particles in exposed 
area and perimeter are illustrated. 

Artificial Intelligence (AI), particularly Machine Learning (ML) is a 
discipline of computer science that focuses on studying mathematical 
models and several different algorithms to make predictions utilizing 
knowledge and providing a feasible solution to dataset [16–18]. A 
dataset is the central part of any learnable decision-making system for 
automated classification, regression tasks, clustering, association rule 
learning, and reinforcement learning. Machine learning can adopt new 
methods according to its characteristics, simulate human learning 
methods, or combine the two to form new methods [19]. 

Through data interpretation, predictions are developed and obtained 
by connecting the data with the knowledge set and developing the 
learning algorithms [20,21]. ML usually provides systems with the 
ability to learn and enhance from experience without being specifically 
programmed automatically. The methods show the advantages partic
ularly in geosciences, where they challenge grade and recovery in 
flotation [22] application to classify minerals automatically [23], 
technological advancement in the electronic industry [24], geo
metallurgy [25,26] and classification of drill core textures for process 
simulation [27]. The ML algorithms can be categorized into four pri
mary types: supervised [28], unsupervised [29,30], semi-supervised 
[31] and reinforcement learning [32]. Learning concerns a set of 

procedures defined to adjust the parameters of an AI, so that it can learn 
a certain function. 

In concern of mineral characterization, recent publications have 
been produced mainly focus on a framework based on ML to maximize 
the use of such classifications for decision-making to improve the grade 
or recovery, optimize the throughput, reduce the environmental foot
print of the process or provide confidence in predictions of metal pro
duction at geometallurgical model [26]. ML has been concentrated on 
prediction by using specified learning algorithms to find underlying 
patterns in large amounts of complex data. The ML methods can be 
effective even when the data are gathered without a carefully controlled 
experimental design and in the presence of complicated nonlinear in
teractions [33]. 

A series of works have been developed on the application of ANN 
techniques. 

The correlations of the variables obtained by the technological 
characterization of the gold ore, especially the accessibility variable, 
using the Self-Organizing Maps (SOM) in the formation of clusters and in 
the implementation as an alternative tool to impute the missing data of 
the low-grade gold ore were object of study by Ref. [34]. 

Through process testing and mineralogical characterization, the 
development of a methodology for integrating process properties into a 
spatial model using ML methods and comparing performance in terms of 
its accuracy was also a related topic [25]. 

Classification performance was the subject of a study in which a 
reliable ML classifier was evaluated to identify several heavy minerals 
based on EDS data. The results indicated that Random Forest can be used 
as the most effective classifier for heavy mineral classification [35]. 

[36] published a review equipping researchers and industrial pro
fessionals with structured knowledge of the state of machine learning 
applications in mineral processing. Variables from gold ore mineralog
ical characterization such as arsenic, gold, and sulfur content as well as 
mineral associations and grain size of gold exposure influence the 
accessibility of the leach solution [15,34]. The researchers took on the 
task of modeling and predicting chemical-mineralogical behavior using 
mechanistic or empirical models. In supervised learning, some algo
rithms also are well suited for empirical regression modeling of a 
multivariable operation. 

In this context, the present work aims to use a dataset from miner
alogical characterization to predict the variable accessibility from 
different ML methods, comparing their performance in terms of their 
accuracy. Algorithms such as K-Nearest Neighbor (k-NN), Random 
Forest (RF), Sequential Minimum Optimization for Support Vector Ma
chine (SMOreg), and Gaussian Processes (GP) were the ML models 
chosen. Furthermore, variable importance in the modeling and predic
tion was examined. Precision is expressed as coefficient of determina
tion, mean absolute error, and root mean square error (R2, MAE, and 
RMSE, respectively). 

Fig. 1. Accessibility of gold grains: (A) Gold grain exposed and (B) Gold grain 
with minimum exposure and accessibility, liable to be leached and gold grain 
locked (yellow rectangle) in arsenopyrite particle. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 2. Schematic representation of classes of particles by percentage in area and perimeter exposed (phase of interest in yellow). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2. Conceptual background 

2.1. Goodness-of-fit indicators 

The following standard statistics metrics are used herein. In equa
tions (1)–(3) the value xI is the predicted value, yI is the measured value. 
MAE means mean absolute error, RMSE means root mean squared error, 
R2 coefficient of determination. Low values of MAE and RMSE, as well as 
high values of R2, indicate a good fit of data. 

MAE =
1
N

∑n

i=1
|xi − yi| (1)  

xi and yi indicate actual and imputed values for n samples. MAE esti
mates the mean error of the predicted and actual values and evaluates 
continuous value imputation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(xi − yi)

2

√

(2) 

RMSE measures the root mean square error for the predicted 
continuous variables concerning the actual variables. MAE and RMSE 
express the average error of the predictive model, concerning the orig
inal data (training and/or test). 

R2 = 1 −

∑n

i=1
(xi − yi)2

∑n

i=1

(
xi − yi

)
2  

y=
1
n

∑n

i=1
yi (3)  

R2 xi and yi indicate actual and imputed values for n samples and yi is the 
mean value of x. It is a statistical measure that indicates how well the 
predicted values are close to the real data values 

2.2. K-Nearest Neighbor (k-NN) 

The k-Nearest Neighbors (k-NN) algorithm, non-parametric super
vised learning method, is widely used for classification and regression 
problems in the industry [37]. The implementation of KNN regression is 
to calculate the average label attributes of the k known samples. Another 
approach uses an inverse distance weighted average label attributes of 
the k known samples [38]. The disadvantages are the computation of 
accurate distances as well as how to set K value [39]. 

However, before a classification can be made, the distance must be 
defined. Euclidean distance is most commonly used (Eq. (4)). 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)(x1 − x2)
T

√

(4) 

Therefore, the performance of these classification algorithms 
significantly depends on the k (Eq. (5)); the key parameter for k-NN. In 
this study, the value of k ranging from 1 to 50 was tested and an ideal 
value of k = 12 (smallest MAE) was found that best resulted in the 
prediction. 

ŷ =
1
k

∑

xi∈Nk(x)

yi (5)  

Nk(x) is the neighborhood of x defined by closet k points Friedman, 
2017. 

2.3. Random forest (RF) 

Random Forest (RF) is a nonparametric ensemble method developed 
by Ref. [40] and is used for both classification and regression analysis. 

RF is a modification of bagging that creates a collection of K-randomized 
regression trees and averages them. For classification problems, a set of 
decision tree classifiers is trained. 

The training algorithm for RFs applies the general technique of 
bootstrap aggregating, or bagging, to tree learners. Bootstrap aggre
gating is used for training data creation by resampling the original data 
set randomly with replacement. This leads to more efficient model 
performance. While the predictions of a single tree are highly sensitive 
to noise in its training set, the average of many trees is not that sensitive 
as long as the trees are not correlated [41]. 

Some advantages can be highlighted when using RF regression: bias, 
few hyperparameters input, and minimized risk of overfitting. It corrects 
the overfitting of the training set by constructing a multitude of Decision 
Trees (DT) and outputting the mean prediction (regression) of the in
dividual trees. Therefore, each DT predicts the output independently, 
and then the predictions are averaged to generate the result. The 
equation (Eq. 6) summarizes the RF operator where x denotes input and 
T̂k (x) is the estimation produced by the kth tree. 

T̂ =
1
K
+
∑K

k=1
T̂ k(x) (6)  

2.4. Sequential minimal optimization for support vector machine 
(SMOReg) 

Sequential minimal optimization (SMO) an algorithm was developed 
by Ref. [42] to train SVM models. Models SVM can offer an advantage in 
generalization performance for solving pattern recognition, and com
plex regression problems and use Lagrange to solve the optimization 
problem is simply defined as a hyperplane between a set of positive data 
and a set of negative data. 

It converts a very large quadratic programming (QP) optimization 
problem to the smallest possible QP problems which can be solved 
analytically. This feature of SMOreg provides a faster solution in nu
merical QP optimization than the chunking algorithm that is used 
conventionally to train the SVM [42]. 

SMOreg starts with the initial two Lagrange multipliers and con
tinues until optimal values of these multipliers’ values are found. One of 
the advantages of the SMOreg algorithm is that extra matrix storage is 
not needed in the training process of SVM. SMOreg algorithms work in 
two stages. In the first stage, the two Lagrange multipliers are solved 
with an analytic method, and in the other stage, the multipliers are 
chosen and optimized heuristically [43]. 

2.5. Gaussian process regression (GP) 

GP is a nonlinear, nonparametric regression tool, useful for inter
polating between data points scattered in a high-dimensional input 
space. It is based on Bayesian probability theory and has very close 
connections to other regression techniques, such as kernel ridge 
regression (KRR) and linear regression with radial basis functions [44]. 
It can capture a wide variety of relations between inputs and outputs by 
utilizing a theoretically infinite number of parameters and letting the 
data determine the level of complexity through the means of Bayesian 
inference [45,46]. 

GPR provides a solution to the modeling problem such that the lo
cality of the interpolation may be explicitly and quantitatively 
controlled by encoding it in the a priori assumption of smoothness of the 
underlying function. Gaussian process regression can serve as a useful 
tool for performing inference both passively describing a given data set 
as best as possible, allowing one to also predict future data as well as 
actively, learning while choosing input points to produce the highest 
possible outputs. There are two equivalent approaches to deriving the 
GPR framework: the weight-space and the function-space views, each 
highlighting somewhat different aspects of the fitting process. 
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2.6. Shapley additive exPlanations 

The SHAPley Additive exPlanations (SHAP) is a visualization tool 
used to making different a machine-learning model more explainable by 
visualizing its output. It can be used for explaining the prediction of any 
model by computing the contribution of each feature to the output 
prediction. This is done by SHAP assigning a score to each variable 
(SHAP value), which indicates how important the variable was [47,48]. 

Local accuracy, missingness, and consistency are properties to satisfy 
SHAP. Local accuracy means the explanation model should match the 
original model. The missingness property enforces that missing variables 
in the dataset are attributed no importance [49]. The consistency 
property says that if a model changes so that the marginal contribution 
of a feature value increases or stays the same (regardless of other fea
tures), the Shapley value also increases or stays the same (Eq. (7)). 

SHAP specifies the explanation as: 

g(z′)=∅0 +
∑m

j=1
∅jz′

j (7)  

where g is the explanation model. z′∈ {0,1}m is the coalition vector. M is 
the maximum coalition size and ∅j ∈ ℝ is the feature attribution for a 
feature j, the Shapley values. 

Two methods can be used to approximate SHAP values Kernel SHAP 
and TreeSHAP: KernelSHAP estimates for instance x the contributions of 
each feature value to the prediction and TreeSHAP is a variant of SHAP 
for tree-based machine learning models such as decision trees, random 
forests, and gradient boosted trees. TreeSHAP was introduced as a fast, 
model-specific alternative to KernelSHAP, but it turned out that it can 
produce unintuitive feature attributions [50]. 

SHAP feature is an alternative to permutation feature importance. 
There is a difference between both measures: Permutation feature 
importance is based on the decrease in model performance and SHAP is 
based on the magnitude of feature attributions. The fast computation 
makes it possible to compute the many Shapley values needed for the 
global model interpretations. The global interpretation methods include 
feature importance, feature dependence, interactions, clustering, and 
summary plots. 

3. MATERIALS AND METHODS 

3.1. Framework 

The structure consists of the acquisition of a set of chemical- 
mineralogical data of gold ore obtained by X-ray based automated 
image analysis (SEM-IA), regression analysis, and efficiency test by ML 
of four different algorithms. The samples were characterized at the 
Technological Characterization Laboratory (LCT) of the University of 
São Paulo (USP), Brazil. Fig. 3 shows the flowchart of activities and 
procedures performed according to the methodology used. 

The application of the ML algorithms presented here was performed 
using WEKA [51]. For the database training and testing stages, multiple 
combinations were applied to test and identify the best hyperparameters 
that fit each model. Table 1 show the main adjusted parameters. 

3.2. Dataset 

The dataset is composed of 168 samples obtained by image analysis 

Fig. 3. Flowchart of activities performed until prediction of accessibility and variable importance.  

Table 1 
Description of the hyperparameters used for each machine learning model.  

K-Nearest Neighbor (K-NN) Sequential Minimum Optimization 
(SMOReg) 

Number of 
neighbors 

12 Batch Size 100 

Batch Size 100 Complexity 
Parameter 

5 

Distance 
weighting 

No distance 
weighting 

Filter type Normalize training 
data 

Mean Squared True Kernel Puk 
Search 

Algorithm 
Euclidean 
Distance 

Reg Optimizer Reg SMO 
Improved 

Random Forest (RF) Gaussian Processes (GP) 

Break Ties 
Randomly 

True Batch Size 100 

Execution Slots 3 Filter type Normalize training 
data 

Max Depth 6 Kernel Puk 
Iterations 110 noise 1 
Seed 6 Seed 8  
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(SEM-AI) of sulphide refractory gold ore samples and was provided by a 
low-grade gold-producing company (<0.6 g/t) in the state of Minas 
Gerais, Brazil. The deposit was hosted in carbonaceous seriticitic phyl
lite with the intercalation of phyllosilicate essentially composed of 
chlorite and millimeter quartzite lenses and venules. Sulphides, in 
general, are represented by pyrite, arsenopyrite, and sparse occurrences 
of pyrrhotite, sphalerite, chalcopyrite, and galena. Gold grains occur 
essentially associated with sulfides, mainly pyrite and arsenopyrite. Few 
free gold grains were observed. 

Chemical analysis was carried out by fire assay to dosage of Au 
content, As by ICP OES and S by the pyrolysis method in an induction 
furnace with determination by infrared cell. Quantitative mineralogy, 
composition, forms of occurrence, and association of gold were assessed 
at 0.50–0.020 mm, carried out on sink products of heavy liquid sepa
ration in polished sections by SEM-IA using the MLA/FEI software 
coupled to a FEI Quanta 600 FEG scanning electron microscope. The 
automated search of the gold grains in polished sections of 30 mm in 
diameter relative to the heavy product with an analysis time of 
approximately 2.5 h section under the conditions of 300X using sparse 
phase liberation (SPL) analysis. A specific database for the present study, 
containing data on specific weight, chemical composition and EDS 
spectrum, was created for all minerals present (mineral reference). In 
total, 551 polished sections were analyzed. 

A total of 18 input variables were treated, resulting from image 
analysis and chemical analysis, in which allow tracing of the most 
relevant components that influence the accessibility indices. These 
variables were used to build machine learning models. The variables 
inputted are listed in Table 2 and the range investigated for each 
variable. 

Descriptive statistical analyses were performed using the standard 
library packages of Python. Significant differences (P < 0.05) between 
data sets are indicated where appropriate. The Shapiro–Wilk normality 
test was used to determine whether a data set followed a normal 

distribution [52]. 
For the study of correlations, Spearman’s rank correlation coefficient 

was used [53] as it is a usual alternative to estimate linear correlations in 
situations where there is joint non-normality between variables. 
Spearman’s rank is a nonparametric rank statistic proposed by Charles 
Spearman as a measure of the strength of an association between two 
variables (Eq. (8)). Spearman correlation coefficient can be computed as 
follows: 

ρ= 1 −
6
∑

d2
i

n(n2 − 1)
(8)  

where ρ means Spearman’s rank correlation coefficient, di, the differ
ence between the two ranks of each observation n: number of observa
tions. The Spearman rank correlation can take a value from +1 to − 1. By 
convention, classify Spearman’s correlation coefficients as weak: 0.0 to 
0.3 or − 0.3 to 0.0, moderate: 0.3 to 0.7 or − 0.7 to − 0.3. strong: >0.7 or 
< − 0.7. 

4. RESULTS AND DISCUSSION 

4.1. Database description 

One of the elements necessary for an accurate of machine learning 
application is model information diversity. The diversity of the database 
reflects the incorporation of measurement information characterizing 
relations across different elements and variables, representing the 
analyzed sample space, which must contain sufficient and necessary 
information for prediction to be effective. 

The statistical analysis is performed to find the mean, median, 
standard deviation, coefficient of variation, variance and kurtosis of all 
the 18-input chemical-mineralogical variables that were considered for 
the model development. To test the normality of the data set, the Sha
piro–Wilk test was applied (Table 3). The test rejects the hypothesis of 
normality when the p-value is less than or equal to 0.05. Failing the 
normality test allows you to state with 95 % confidence the data does not 
fit the normal distribution. Passing the normality test only allows you to 
state no significant departure from normality was found. 

Kurtosis data is a measure that describes how heavily the tails of a 
distribution differ from the tails of a normal distribution. The results 
reinforce the non-normality of the data. Values positive suggests heavy 
tails (leptokurtic) and negative values mean that there are light tails 
(platykurtic). The tail heaviness or lightness is in comparison with the 
normal distribution and it suggests whether the data distribution is 
flatter or less flat than the normal distribution. 

The results show that the p-values are below 0.05 indicating non- 
normality of the data. The py_m variable was the only one that came 
close, indicating a value of 0.04. Most of the variables approached 0.0. 
SEM-IA mineralogy analysis was performed to obtain the detailed 
quantitative mineralogical composition of samples (Fig. 4). 

The mineralogical compositions show the considerable presence of 
quartz, mica, and albite, which together represent, on average, 85 % of 
the total sample composition. Sulfide minerals such as sphalerite, 
galena, and chalcopyrite were not represented in the table due to erratic 
occurrence being grouped into othersulph_m. 

The main gold associations, assessed by SEM-IA are shown in Fig. 5 
and expressed in terms of perimeter of contact with other minerals. The 
gold with exposed perimeter (exposed_a) on bearing particles of pyrite 
(pyrite_a), arsenopyrite (aspy_a), and a grouping of galena, sphalerite, 
chalcopyrite represented by other sulphides (othersulph_a). The occur
rence of gold is mainly associated with arsenopyrite and pyrite and in 
very low proportions with silicates, carbonates, and heavy minerals. 

The Spearman correlation matrix “r” of the variables obtained by 
image analysis (SEM-AI) and chemical analysis show moderate corre
lations (0.3–0.7) between accessibility, variable studied for prediction, 
arsenic content (As_grade), sulfur content (S_grade), both showing a 

Table 2 
Characterization of 18 variables inputted for ML modeling.  

# Input 
variable 

Description unit Range 
investigated 

1 As_grade Arsenic grade ppm 280–5691 
2 S_grade Sulfur grade % 0.30–2.00 
3 Au_grade Gold grade g/t 0.04–1.36 
4 qtz_m Mineralogical distribution of 

quartz 
% 11.3–78.3 

5 mica_m Mineralogical distribution of 
mica 

% 16.6–49.9 

6 clt_m Mineralogical distribution of 
chlorite 

% 0.1–3.3 

7 alb_m Mineralogical distribution of 
albite 

% 1.0–13.8 

8 heavy_m Mineralogical distribution of 
heavy minerala 

% 0.7–3.8 

9 carb_m Mineralogical distribution of 
carbonatesa 

% 0.0–14.6 

10 py_m Mineralogical distribution of 
pyrite 

% 0.0–3.6 

11 aspy_m Mineralogical distribution of 
arsenopyrite 

% 0.0–2.0 

12 othersulph_m Mineralogical distribution of 
other sulphidesa 

% 0.1–5.5 

13 D50 Equivalent diameter D50 in 2D μm 2.0–42.0 
14 exposed_a Exposed perimeter association % 0.0–91.7 
15 py_a Grain gold association with 

pyrite 
% 0.0–94.8 

16 aspy_a Grain gold association with 
arsenopyrite 

% 0.0–100 

17 othermin _a Grain gold association with 
other minerals 

% 0.0–77.0 

18 accessibility Accessibility gold grain % 0.4–100  

a Heavy minerals: ilmenite. rutile. goethite; carbonates: siderite. ankerite; 
other sulphides: galena. sphalerite. chalcopyrite. 
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correlation of 0.65 and 0.74, respectively and gold exposure (exposed_a) 
of 0.7. As expected, accessibility is directly correlated with gold content 
and exposed perimeter since the increase or decrease in accessibility is 
related to the amount or the occurrence of gold grains. Spearman 

assessments also indicated that there is a good correlation between gold 
and arsenic content (0.73), shown also with the mineral occurrence of 
arsenopyrite (aspy_m). 

Negative correlations occur with mica, heavy minerals (rutile, 
ilmenite, and goethite), and a fact that may be associated with the low 
occurrence of gold grains in these minerals. Fig. 6 shows the correlation 
matrix (Spearman rank correlation) between 18 features. 

4.2. Predictive performance 

The predictive performance of four machine learning model methods 
for the training, validation, and test data presented in Table 3 were 
compared and evaluated in terms of better predictive performance for 
the accessibility variable. 

To evaluate the performance of the algorithm was employed a 10- 
fold cross-validation to obtain a generalized model that does not over
fit on training data. In 10-fold cross-validation on the training set, the 
original samples were divided randomly into ten equal-sized subsets, of 
which a unique fold was picked as a validation set for testing the model 
and the remaining nine subsets were used as training data. This process 

Table 3 
Descriptive statistical analysis of the process mineralogy variables used as input for models and the hypothesis test (p-value) by Shapiro-Wilk.  

# Input variable Mean Median standard deviation CV Variance Kurtosis p-value 

1 As_grade 2313.6 2156.5 1229.5 0.53 1511565 − 0.69 0.00 
2 S_grade 1.17 1.10 0.43 0.37 0.18 − 0.89 3.5e-05 
3 Au_grade 0.61 0.55 0.35 0.54 0.11 − 0.88 5.8e-06 
4 qtz_m 45.5 43.8 9.09 0.20 82.58 1.85 2.7e-06 
5 mica_m 36.9 37.9 6.22 0.17 38.66 1.16 6.7e-06 
6 clt_m 1.55 1.60 0.72 0.46 0.51 − 0.87 0.00 
7 alb_m 5.20 4.20 2.98 0.57 8.85 − 0.33 3.4e-07 
8 heavy_m 1.71 1.60 0.55 0.32 0.30 1.73 9.8e-07 
9 carb_m 5.46 5.80 2.66 0.49 7.09 0.88 0.00 
10 py_m 1.59 1.50 0.84 0.53 0.70 − 0.47 0.04 
11 aspy_m 0.61 0.40 0.52 0.86 0.27 − 0.19 9.8e-11 
12 othersulph_m 1.18 0.90 0.97 0.82 0.94 4.30 2.9e-14 
13 D50 14.4 10.0 10.2 0.71 104.3 0.21 1.2e-10 
14 exposed_a 24.9 16.9 22.0 0.88 484.6 0.65 3.3e-11 
15 py_a 31.9 31.8 20.6 0.65 425,2 − 0.11 0.00 
16 aspy_a 32.1 30.7 21.1 0.66 444.5 0.08 0.00 
17 othermin_a 13.3 9.10 14.3 1.07 203.4 5.57 9.9e-15 
18 accessibility 60.7 68.2 28.5 0.47 813.5 − 1.03 1.1e-07 

Heavy_m: ilmenite, rutile, goethite; carbonates: siderite, ankerite; othersulph_m: galena, sphalerite and chalcopyrite. Othermin _a: quartz, albite, heavy minerals, 
galena, sphalerite and chalcopyrite. 

Fig. 4. The major composition of the sample was determined by SEM-IA mineralogy analysis (wt%).  

Fig. 5. The gold association by perimeter of contact is determined by SEM-IA 
(wt%). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

F.R. Costa et al.                                                                                                                                                                                                                                 



Journal of Materials Research and Technology 29 (2024) 668–677

674

was repeated ten times, with each of the ten subsets used exactly once as 
the validation data [54]. 

The performance comparison based on RMSE, MAE, and R2 for 
training, validation, and testing, for regression is summarized in Table 4. 
Random Forest algorithm outperformed all other regression algorithms 
based on lower RMSE and MAE tests. The mean absolute error on test 
data for the RF model was 11.76; RMSE of 14.48 and 0.77 of R2, indi
cating good predictability. The k-NN model had the worst training error 
in comparison with an R2 of 0.65. RF and GP achieved good performance 
on the training data. 

Comparing the error associated with the regression, calculated by the 
difference between the original and the predicted value. Fig. 7 shows, in 
box form, the interquartile difference of the set of samples tested. The 
low interquartile difference (Q3-Q1) shows a low data dispersion in the 
range of 50 % of the data for the RF algorithm. The RF models produced 
the lowest mean CV error, whereas the other models produced much 
higher mean CV error. 

The performance of predict vs. original accessibility data based on RF 
model on the training and test data is given in Fig. 8. The prediction 
indicates that, for the training tests, the data set presented an excellent 
coefficient (0.97) between the predicted and original values. However, 
the tested data showed a moderate coefficient of determination (R2; 
0.77). 

4.3. Variable importance 

SHAP analysis investigates the impact of each variable on your 
prediction model by showing its significance level. As shown in Fig. 9A, 
each variable had a different level of contribution to the prediction 
result of the accessibility variable. 

SHAP assessments can determine the multiple correlations between 
variables rank them based on their importance and represent the 

Fig. 6. Spearman’s rank correlation map shows the correlation between the input variables.  

Table 4 
Scoring of 5 model regression performances based on MAE, R2 and RMSE after training dataset, cross-validation (10 folds), and testing.  

Algorithm Train Validation Test 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

K-NN 0.71 15.95 12.64 0.64 17.50 13.88 0.65 17.51 13.47 
RF 0.97 5.61 4.59 0.71 15.59 12.83 0.77 14.48 11.76 
SMOReg 0.72 15.08 11.80 0.65 16.95 13.78 0.69 16.50 13.44 
GP 0.91 10.27 8.40 0.63 18.04 14.65 0.67 18.73 14.08 

K-NN: K-Nearest Neighbor; RF: Random Forest; SMOReg: Sequential minimal optimization for support vector machine; GP: Gaussian Processes. 

Fig. 7. Box showing the regression error data between original and predicted 
values 
*K-NN: K-Nearest Neighbor; RF: Random Forest; SMOReg: Sequential minimal 
optimization for support vector machine; GP: Gaussian Processes. 
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average magnitude of their impacts. The assessment of the importance 
ranking of the SHAP variable revealed a pattern similar to the Spearman 
correlation assessment (Fig. 6), showing that the variables Au_grade, 
exposed_a, D50, and S_grade indicate a significant impact on the model 
result. All variables are shown in the order of global feature importance, 
the first being the most important and the last being the least important 
Fig. 9B. 

The exposed_a, Au_grade, and As_grade variables have a high posi
tive contribution when their values are high and a low negative 
contribution on low values. The variables mica_m, othersulph_m, 

hmin_m, aspy_m, alb_m, othermin_a, carb_m, py_m, qtz_m, and clt_m 
have almost no contribution to the prediction of whether their values are 
high, or low. 

The results obtained through the feature importance show that the 
exposed_a variable has great weight in predicting accessibility, as shown 
in Fig. 9A. 

Due to the high level of importance of the exposed_a and Au_grade 
variable in predicting accessibility, a correlation was generated that 
relates the original gold content data and the predicted values of the 
accessibility variable resulting from the application of the RF algorithm 

Fig. 8. Random Forest Original vs. predicted accessibility variable for train and test.  

Fig. 9. Ranking variables based on their mean SHAP value and their relationship for accessibility prediction. (A) Feature importance plot using Random Forest; (B) 
Impact of the input parameters for the accessibility model’s output from SHAP analysis. 

Fig. 10. Random Forest Original vs. predicted accessibility variable for training and test.  
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that had the best performance among the 4 analyzed algorithms. The 
correlation plot showed a good fit represented by R2 (0.80) and a 
polynomial equation of the curve was generated (Fig. 10A). The equa
tion was applied for gold grades between 0.1 and 1.4 ppm (Fig. 10B) 
generating a theoretical curve modeled by the RF algorithm. 

The representation of the equation and the curve translates, in a 
theoretical and adjusted context, the prediction of the variable of in
terest (accessibility) by the gold grade. The theoretical curve using gold 
grades can provide a good prediction or tendency of accessibility per
centage as a function of the gold grade of the sample, especially when 
using the variable gold grade, which is the variable predominant and 
essential in a database of auriferous ores. 

The main observed features or features importance (exposed_a, 
Au_grade and As_grade) are directly related to the accessibility variable 
with a degree of dependence also evidenced by the Spearman’s corre
lation. The accessibility of a gold particle is denoted by a lesser or 
greater degree of occurrence depending on its exposure to leaching 
fluids, the gold and arsenic content since the gold grain is largely 
associated with arsenopyrite. Therefore, accessibility is quantitatively 
linked to gold and arsenic contents and their exposure. 

5. Conclusions 

The main objective of this work was to predict accessibility variables 
through models using machine learning tools comparing four machine 
learning methods. The use of WEKA freeware allowed the production of 
fast and accurate machine learning models based on a mineralogical and 
chemical database. The performance of four ML algorithms (K-NN, RF, 
SMOReg, and GP) applied to a database allowed drawing the following 
conclusions. 

(a) The machine learning approaches employed satisfactorily pre
dicted the accessibility in gold grains, that is, the ability of a 
leachate fluid to access a portion of gold. 

The random forest model outperforms the models in predicting 
accessibility. It presented a coefficient of determination R2 (0.77), MAE 
(11.76), and RMSE (14.48).  

(b) The validation K-fold (cross-validation 10-folds) confirms good 
precision in the model approach also better performance of the 
RF model towards the required outcome as opposed to the other 
three models.  

(c) It was also reported from the SHAP analysis that the Au_grade, 
exposed_a, and As_grade showed the highest contribution level 
towards the prediction process of the model.  

(d) Spearman’s correlation coefficient is employed to check for 
collinearity and can be used to accurately capture the statistical 
dependence of input parameters. When compared with the 
importance variables, the variables were similar to the Spearman 
coefficient. 

It remains for future studies to increase the systematic acquisition of 
analytical data to increase the number of samples since the resulting 
model is more suitable for visualizing trends and understanding the 
spatial properties of the properties of the modeled process. 

In conclusion, machine-learning algorithms have proven to be very 
useful and versatile in many situations, but they also have some disad
vantages that must be considered when creating and using these models, 
especially concerning inaccurate or biased data, since the algorithm may 
generate undesirable results. 
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[43] Kayadelen C, Altay G, Önal S, Önal y. Sequential minimal optimization for local 
scour around bridge piers. Mar Georesour Geotechnol 2022;40(4):462–72. https:// 
doi.org/10.1080/1064119X.2021.1907635. 

[44] Gershmana SJ, Blei DM. A tutorial on Bayesian nonparametric models. J Math 
Psychol 2012;56(1):1–12. https://doi.org/10.1016/j.jmp.2011.08.004. 

[45] Rasmussen CE, Williams CKI. Gaussian Processes for machine learning. the MIT 
Press; 2006. 

[46] Williams CKI. Computation with infinite neural networks. Neural Comput 1998;10 
(5):1203–16. 

[47] García MV, Aznarte JL. Shapley additive explanations for NO2 forecasting, Ecol. 
Inform 2020;56:1–12. 

[48] Wen Z, Zhou C, Pan J, Nie T, Zhou C, Lu Z. Deep learning-based ash content 
prediction of coal flotation concentrate using convolutional neural network. Miner 
Eng 2021;174:1–14. https://doi.org/10.1016/j.mineng.2021.107251. 

[49] Liu X, Aldrich C. Explaining anomalies in coal proximity and coal processing data 
with Shapley and tree-based models. Fuel 2023;335:1–16. 

[50] Lundberg SM, Lee SI. Consistent feature attribution for tree ensembles. Proceedings 
of the 34 th international conference on machine learning. Sydney, Australia: 
JMLR: W&CP; 2017. 

[51] Frank E, Hall MA, Witten IH. The WEKA workbench. Online appendix. Data 
mining: practical machine learning tools and techniques”. fourth ed. Burlington: 
Morgan Kaufmann; 2016. 

[52] Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). 
Biometrika 1965;52:591–611. 

[53] Spearman C. General Intelligence, objectively determined and measured. Am J 
Psychol 1904;15:201–93. 

[54] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and 
model selection. Int Joint Conf Artif Intell 1995;14(2):1137–45. 

F.R. Costa et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.mineng.2022.107479
https://doi.org/10.1016/j.mineng.2019.01.032
https://doi.org/10.1016/j.mineng.2019.01.032
https://doi.org/10.1016/j.mineng.2019.03.008
https://doi.org/10.1016/j.mineng.2019.03.008
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref27
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref27
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref28
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref28
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref29
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref30
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref30
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref30
https://doi.org/10.1016/j.is.2023.102178
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref32
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref32
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref33
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref33
https://doi.org/10.3390/min13030340
https://doi.org/10.3390/min13030340
https://doi.org/10.1016/j.mineng.2019.105899
https://doi.org/10.1016/j.mineng.2019.105899
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref36
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref36
https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/10.1109/ICCS45141.2019.9065747
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref38
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref38
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref39
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref39
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref39
https://doi.org/10.1007/9781441993267_5
https://doi.org/10.1007/9781441993267_5
https://doi.org/10.1109/MGRS.2016.2616418
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref42
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref42
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref42
https://doi.org/10.1080/1064119X.2021.1907635
https://doi.org/10.1080/1064119X.2021.1907635
https://doi.org/10.1016/j.jmp.2011.08.004
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref45
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref45
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref46
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref46
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref47
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref47
https://doi.org/10.1016/j.mineng.2021.107251
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref49
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref49
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref50
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref50
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref50
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref51
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref51
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref51
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref52
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref52
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref53
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref53
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref54
http://refhub.elsevier.com/S2238-7854(24)00139-X/sref54

	Predicting gold accessibility from mineralogical characterization using machine learning algorithms
	1 Introduction
	2 Conceptual background
	2.1 Goodness-of-fit indicators
	2.2 K-Nearest Neighbor (k-NN)
	2.3 Random forest (RF)
	2.4 Sequential minimal optimization for support vector machine (SMOReg)
	2.5 Gaussian process regression (GP)
	2.6 Shapley additive exPlanations

	3 Materials and methods
	3.1 Framework
	3.2 Dataset

	4 Results and discussion
	4.1 Database description
	4.2 Predictive performance
	4.3 Variable importance

	5 Conclusions
	Declaration of competing interest
	Acknowledgments
	References


