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Information about accessibility is of great relevance for gold recovery studies. Obtaining these variables from
machine learning models can greatly assist in quickly determining accessibility. Few studies have been published
relating the mineralogy of the gold ore process and the application of artificial intelligence, mainly algorithms in
predicting variables related to gold recovery and extraction. Accessibility is an important variable for under-
standing the ability to recover gold from a cyanide solution, which can occur through fractures or some other
means that provides access to the solution and consequent leaching of the gold grain. This study aims to present a
model capable of predicting the accessibility variable using a data set with 168 characterization results from
different ML methods, such as Linear Regression (LR), Random Forest (RF), Sequential Minimum Optimization
for Support Vector Machine (SMOreg) and Gaussian Processes (GP). In this context, it was possible to establish
that the random forest model performed best by presenting a coefficient of determination R? (0.77), MAE
(11.76), and RMSE (14.48). It was also reported from the SHAP analysis that the Au_grade, exposed_a, and

As_grade showed the highest contribution level towards the perdition process of the model.

1. Introduction

Process Mineralogy is an interdisciplinary approach aimed at linking
the study of specific aspects of the ore bodies and plant products that can
directly help in determining the mineralogical characteristics of the ore
bodies, the potential for recovery, and the identification of their
behavior in face of the beneficiation process. It provides subsidies for
metallurgists, process engineers, and geologists in mine planning,
development, and optimization of the ore’s beneficiation process and
hydrometallurgical operations [1-6].

The mineralogical characterization has benefited from the
advancement of techniques for electronic microscopy, particularly in the
automation of quantitative image analysis techniques (SEM-IA). This is a
branch of mineralogy applied to the determination of quantitative
mineralogy, mineral’s association and liberation, grain size distribution,
particle size, particles, and their inclusions, among other characteristics
related to their morphology. In recent years, there has been an expan-
sion in the use of the quantitative analysis technique, along with the

improvement of equipment and the development of systems coupled
with Energy Dispersive Spectroscopy (EDS) and Image Analysis (IA). A
great advantage of automated image analysis methods is that they allow
faster analysis, statistical robustness with the generation of a large
amount of data, and reliability in the results, thus minimizing the
analysis error [7-13].

In gold ores, the classic concept of mineral liberation described by
Gaudin [14], must be adapted when based on specific properties of gold
extraction and recovery. The term “accessible” or “accessibility” is more
adequate and means the portion accessible is directly proportional to the
ability to extract gold from a cyanide solution via fractures or micro-
fractures. The gold that can be leached or recovered is the portion of
gold in which there is some perimeter either exposed to alkaline cyanide
solutions, on the surface or included in particles whose gold is accessible
by microfractures or some medium in which the solution can flow [15].
Although Fig. 1A shows a free gold grain, Fig. 1B displays in the same
mineral a locked gold grain and gold that may be extracted by fracture
for the solution percolation, making it accessible. Different percentages
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Fig. 1. Accessibility of gold grains: (A) Gold grain exposed and (B) Gold grain
with minimum exposure and accessibility, liable to be leached and gold grain
locked (yellow rectangle) in arsenopyrite particle. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)

of accessibility can occur. In the two-dimensional representation, it is
evident that the gold may be extracted by paths located in another part
of the grain not visualized in the 2D image. Thus, information on gold
accessibility by image analysis may be undersized or underestimated
due to technique limitations.

The classic definition of mineral liberation shows that one of the
species minerals in a population of different mineral species consists of
the percentage of mineral, which occurs as free particles concerning the
total amount of mineral in mixed or free particles. The association
corresponds to the percentage of the mineral included in two or more
phases about the total. In Fig. 2, different classes of particles in exposed
area and perimeter are illustrated.

Artificial Intelligence (AID), particularly Machine Learning (ML) is a
discipline of computer science that focuses on studying mathematical
models and several different algorithms to make predictions utilizing
knowledge and providing a feasible solution to dataset [16-18]. A
dataset is the central part of any learnable decision-making system for
automated classification, regression tasks, clustering, association rule
learning, and reinforcement learning. Machine learning can adopt new
methods according to its characteristics, simulate human learning
methods, or combine the two to form new methods [19].

Through data interpretation, predictions are developed and obtained
by connecting the data with the knowledge set and developing the
learning algorithms [20,21]. ML usually provides systems with the
ability to learn and enhance from experience without being specifically
programmed automatically. The methods show the advantages partic-
ularly in geosciences, where they challenge grade and recovery in
flotation [22] application to classify minerals automatically [23],
technological advancement in the electronic industry [24], geo-
metallurgy [25,26] and classification of drill core textures for process
simulation [27]. The ML algorithms can be categorized into four pri-
mary types: supervised [28], unsupervised [29,30], semi-supervised
[31] and reinforcement learning [32]. Learning concerns a set of
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procedures defined to adjust the parameters of an Al so that it can learn
a certain function.

In concern of mineral characterization, recent publications have
been produced mainly focus on a framework based on ML to maximize
the use of such classifications for decision-making to improve the grade
or recovery, optimize the throughput, reduce the environmental foot-
print of the process or provide confidence in predictions of metal pro-
duction at geometallurgical model [26]. ML has been concentrated on
prediction by using specified learning algorithms to find underlying
patterns in large amounts of complex data. The ML methods can be
effective even when the data are gathered without a carefully controlled
experimental design and in the presence of complicated nonlinear in-
teractions [33].

A series of works have been developed on the application of ANN
techniques.

The correlations of the variables obtained by the technological
characterization of the gold ore, especially the accessibility variable,
using the Self-Organizing Maps (SOM) in the formation of clusters and in
the implementation as an alternative tool to impute the missing data of
the low-grade gold ore were object of study by Ref. [34].

Through process testing and mineralogical characterization, the
development of a methodology for integrating process properties into a
spatial model using ML methods and comparing performance in terms of
its accuracy was also a related topic [25].

Classification performance was the subject of a study in which a
reliable ML classifier was evaluated to identify several heavy minerals
based on EDS data. The results indicated that Random Forest can be used
as the most effective classifier for heavy mineral classification [35].

[36] published a review equipping researchers and industrial pro-
fessionals with structured knowledge of the state of machine learning
applications in mineral processing. Variables from gold ore mineralog-
ical characterization such as arsenic, gold, and sulfur content as well as
mineral associations and grain size of gold exposure influence the
accessibility of the leach solution [15,34]. The researchers took on the
task of modeling and predicting chemical-mineralogical behavior using
mechanistic or empirical models. In supervised learning, some algo-
rithms also are well suited for empirical regression modeling of a
multivariable operation.

In this context, the present work aims to use a dataset from miner-
alogical characterization to predict the variable accessibility from
different ML methods, comparing their performance in terms of their
accuracy. Algorithms such as K-Nearest Neighbor (k-NN), Random
Forest (RF), Sequential Minimum Optimization for Support Vector Ma-
chine (SMOreg), and Gaussian Processes (GP) were the ML models
chosen. Furthermore, variable importance in the modeling and predic-
tion was examined. Precision is expressed as coefficient of determina-
tion, mean absolute error, and root mean square error (R2, MAE, and
RMSE, respectively).

Classes of particle by % in area and perimeter exposed

100% area - 100% exposed

40% area - 10% exposed

30% area - 0% exposed

200u] [0’

200u] [ 2000]

Fig. 2. Schematic representation of classes of particles by percentage in area and perimeter exposed (phase of interest in yellow). (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

669



F.R. Costa et al.
2. Conceptual background
2.1. Goodness-of-fit indicators

The following standard statistics metrics are used herein. In equa-
tions (1)-(3) the value x; is the predicted value, y; is the measured value.
MAE means mean absolute error, RMSE means root mean squared error,
R? coefficient of determination. Low values of MAE and RMSE, as well as
high values of R?, indicate a good fit of data.

n

1
MAE:N Z|x,- — i

i=1

(€8]

x; and y; indicate actual and imputed values for n samples. MAE esti-
mates the mean error of the predicted and actual values and evaluates
continuous value imputation.

n

1 2
RMSE = , |~ =y
SE= [ D_(xi = ¥)

i=1

(2)

RMSE measures the root mean square error for the predicted
continuous variables concerning the actual variables. MAE and RMSE
express the average error of the predictive model, concerning the orig-
inal data (training and/or test).

E(Xi - Yi)z
RP=1- =
Z(Xi - yi>2
i=1 -
=D Q
YT p Y

R? x; and y; indicate actual and imputed values for n samples and Yiisthe
mean value of x. It is a statistical measure that indicates how well the
predicted values are close to the real data values

2.2. K-Nearest Neighbor (k-NN)

The k-Nearest Neighbors (k-NN) algorithm, non-parametric super-
vised learning method, is widely used for classification and regression
problems in the industry [37]. The implementation of KNN regression is
to calculate the average label attributes of the k known samples. Another
approach uses an inverse distance weighted average label attributes of
the k known samples [38]. The disadvantages are the computation of
accurate distances as well as how to set K value [39].

However, before a classification can be made, the distance must be
defined. Euclidean distance is most commonly used (Eq. (4)).
d= “4)

(v — ) (x —xz)r

Therefore, the performance of these classification algorithms
significantly depends on the k (Eq. (5)); the key parameter for k-NN. In
this study, the value of k ranging from 1 to 50 was tested and an ideal
value of k = 12 (smallest MAE) was found that best resulted in the
prediction.

)

Ni(x) is the neighborhood of x defined by closet k points Friedman,
2017.

2.3. Random forest (RF)

Random Forest (RF) is a nonparametric ensemble method developed
by Ref. [40] and is used for both classification and regression analysis.
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RF is a modification of bagging that creates a collection of K-randomized
regression trees and averages them. For classification problems, a set of
decision tree classifiers is trained.

The training algorithm for RFs applies the general technique of
bootstrap aggregating, or bagging, to tree learners. Bootstrap aggre-
gating is used for training data creation by resampling the original data
set randomly with replacement. This leads to more efficient model
performance. While the predictions of a single tree are highly sensitive
to noise in its training set, the average of many trees is not that sensitive
as long as the trees are not correlated [41].

Some advantages can be highlighted when using RF regression: bias,
few hyperparameters input, and minimized risk of overfitting. It corrects
the overfitting of the training set by constructing a multitude of Decision
Trees (DT) and outputting the mean prediction (regression) of the in-
dividual trees. Therefore, each DT predicts the output independently,
and then the predictions are averaged to generate the result. The
equation (Eq. 6) summarizes the RF operator where x denotes input and

f"k (x) is the estimation produced by the kth tree.
7= ©

+> T

1

(x)

x| —

K
k=

2.4. Sequential minimal optimization for support vector machine
(SMOReg)

Sequential minimal optimization (SMO) an algorithm was developed
by Ref. [42] to train SVM models. Models SVM can offer an advantage in
generalization performance for solving pattern recognition, and com-
plex regression problems and use Lagrange to solve the optimization
problem is simply defined as a hyperplane between a set of positive data
and a set of negative data.

It converts a very large quadratic programming (QP) optimization
problem to the smallest possible QP problems which can be solved
analytically. This feature of SMOreg provides a faster solution in nu-
merical QP optimization than the chunking algorithm that is used
conventionally to train the SVM [42].

SMOreg starts with the initial two Lagrange multipliers and con-
tinues until optimal values of these multipliers’ values are found. One of
the advantages of the SMOreg algorithm is that extra matrix storage is
not needed in the training process of SVM. SMOreg algorithms work in
two stages. In the first stage, the two Lagrange multipliers are solved
with an analytic method, and in the other stage, the multipliers are
chosen and optimized heuristically [43].

2.5. Gaussian process regression (GP)

GP is a nonlinear, nonparametric regression tool, useful for inter-
polating between data points scattered in a high-dimensional input
space. It is based on Bayesian probability theory and has very close
connections to other regression techniques, such as kernel ridge
regression (KRR) and linear regression with radial basis functions [44].
It can capture a wide variety of relations between inputs and outputs by
utilizing a theoretically infinite number of parameters and letting the
data determine the level of complexity through the means of Bayesian
inference [45,46].

GPR provides a solution to the modeling problem such that the lo-
cality of the interpolation may be explicitly and quantitatively
controlled by encoding it in the a priori assumption of smoothness of the
underlying function. Gaussian process regression can serve as a useful
tool for performing inference both passively describing a given data set
as best as possible, allowing one to also predict future data as well as
actively, learning while choosing input points to produce the highest
possible outputs. There are two equivalent approaches to deriving the
GPR framework: the weight-space and the function-space views, each
highlighting somewhat different aspects of the fitting process.
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2.6. Shapley additive exPlanations

The SHAPley Additive exPlanations (SHAP) is a visualization tool
used to making different a machine-learning model more explainable by
visualizing its output. It can be used for explaining the prediction of any
model by computing the contribution of each feature to the output
prediction. This is done by SHAP assigning a score to each variable
(SHAP value), which indicates how important the variable was [47,48].

Local accuracy, missingness, and consistency are properties to satisfy
SHAP. Local accuracy means the explanation model should match the
original model. The missingness property enforces that missing variables
in the dataset are attributed no importance [49]. The consistency
property says that if a model changes so that the marginal contribution
of a feature value increases or stays the same (regardless of other fea-
tures), the Shapley value also increases or stays the same (Eq. (7)).

SHAP specifies the explanation as:

E(Z’) =@ + Z @jZ} @)
=

where g is the explanation model. z'c {0,1}m is the coalition vector. M is
the maximum coalition size and @; € R is the feature attribution for a
feature j, the Shapley values.

Two methods can be used to approximate SHAP values Kernel SHAP
and TreeSHAP: KernelSHAP estimates for instance x the contributions of
each feature value to the prediction and TreeSHAP is a variant of SHAP
for tree-based machine learning models such as decision trees, random
forests, and gradient boosted trees. TreeSHAP was introduced as a fast,
model-specific alternative to KernelSHAP, but it turned out that it can
produce unintuitive feature attributions [50].

SHAP feature is an alternative to permutation feature importance.
There is a difference between both measures: Permutation feature
importance is based on the decrease in model performance and SHAP is
based on the magnitude of feature attributions. The fast computation
makes it possible to compute the many Shapley values needed for the
global model interpretations. The global interpretation methods include
feature importance, feature dependence, interactions, clustering, and
summary plots.
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3. MATERIALS AND METHODS
3.1. Framework

The structure consists of the acquisition of a set of chemical-
mineralogical data of gold ore obtained by X-ray based automated
image analysis (SEM-IA), regression analysis, and efficiency test by ML
of four different algorithms. The samples were characterized at the
Technological Characterization Laboratory (LCT) of the University of
Sao Paulo (USP), Brazil. Fig. 3 shows the flowchart of activities and
procedures performed according to the methodology used.

The application of the ML algorithms presented here was performed
using WEKA [51]. For the database training and testing stages, multiple
combinations were applied to test and identify the best hyperparameters
that fit each model. Table 1 show the main adjusted parameters.

3.2. Dataset

The dataset is composed of 168 samples obtained by image analysis

Table 1
Description of the hyperparameters used for each machine learning model.

K-Nearest Neighbor (K-NN) Sequential Minimum Optimization

(SMOReg)
Number of 12 Batch Size 100
neighbors
Batch Size 100 Complexity 5
Parameter
Distance No distance Filter type Normalize training
weighting weighting data
Mean Squared True Kernel Puk
Search Euclidean Reg Optimizer Reg SMO
Algorithm Distance Improved

Random Forest (RF) Gaussian Processes (GP)

Break Ties True Batch Size 100
Randomly
Execution Slots 3 Filter type Normalize training
data
Max Depth 6 Kernel Puk
Iterations 110 noise 1
Seed 6 Seed 8

Data preparation and ‘ Raw data

Data collection

Chemical analysis
Mineralogy

Equivalent Circular Diameter
Mineral association

e

labels generation

Accessibility

168 instances; 18 attributes; target 1

¥

Data pre-processing ‘ P
eatures

Data pre-processing and

variables (accessibility)

) Descriptive statistics
# —@ Shapiro-Wilk normality test

Spearman’s rank correlation coefficient

‘ Split dataset

% —@ Cross validation 10-fold

Training set (68%)

Models generation ‘ 114 instances

Testing set (32%)
54 instances

Train and test

K-Nearest Neighbor
Random Forest
Sequential minimal optimization

‘ ML regression models }

Gaussian Processes

R2

. —e MAE
‘ Validation RMSE
Prediction & validation ‘ Best model S lot R

Variable importance

Shapley Additive exPlanations

Fig. 3. Flowchart of activities performed until prediction of accessibility and variable importance.
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(SEM-AI) of sulphide refractory gold ore samples and was provided by a
low-grade gold-producing company (<0.6 g/t) in the state of Minas
Gerais, Brazil. The deposit was hosted in carbonaceous seriticitic phyl-
lite with the intercalation of phyllosilicate essentially composed of
chlorite and millimeter quartzite lenses and venules. Sulphides, in
general, are represented by pyrite, arsenopyrite, and sparse occurrences
of pyrrhotite, sphalerite, chalcopyrite, and galena. Gold grains occur
essentially associated with sulfides, mainly pyrite and arsenopyrite. Few
free gold grains were observed.

Chemical analysis was carried out by fire assay to dosage of Au
content, As by ICP OES and S by the pyrolysis method in an induction
furnace with determination by infrared cell. Quantitative mineralogy,
composition, forms of occurrence, and association of gold were assessed
at 0.50-0.020 mm, carried out on sink products of heavy liquid sepa-
ration in polished sections by SEM-IA using the MLA/FEI software
coupled to a FEI Quanta 600 FEG scanning electron microscope. The
automated search of the gold grains in polished sections of 30 mm in
diameter relative to the heavy product with an analysis time of
approximately 2.5 h section under the conditions of 300X using sparse
phase liberation (SPL) analysis. A specific database for the present study,
containing data on specific weight, chemical composition and EDS
spectrum, was created for all minerals present (mineral reference). In
total, 551 polished sections were analyzed.

A total of 18 input variables were treated, resulting from image
analysis and chemical analysis, in which allow tracing of the most
relevant components that influence the accessibility indices. These
variables were used to build machine learning models. The variables
inputted are listed in Table 2 and the range investigated for each
variable.

Descriptive statistical analyses were performed using the standard
library packages of Python. Significant differences (P < 0.05) between
data sets are indicated where appropriate. The Shapiro-Wilk normality
test was used to determine whether a data set followed a normal

Table 2
Characterization of 18 variables inputted for ML modeling.
# Input Description unit Range
variable investigated

1 As_grade Arsenic grade ppm  280-5691

2 S_grade Sulfur grade % 0.30-2.00

3 Au_grade Gold grade g/t 0.04-1.36

4 qtz_m Mineralogical distribution of % 11.3-78.3
quartz

5 mica_m Mineralogical distribution of % 16.6-49.9
mica

6 cltm Mineralogical distribution of % 0.1-3.3
chlorite

7 alb_m Mineralogical distribution of % 1.0-13.8
albite

8 heavy_m Mineralogical distribution of % 0.7-3.8
heavy mineral®

9 carb_m Mineralogical distribution of % 0.0-14.6
carbonates”

10 py.m Mineralogical distribution of % 0.0-3.6
pyrite

11  aspy.m Mineralogical distribution of % 0.0-2.0
arsenopyrite

12 othersulph.m  Mineralogical distribution of % 0.1-5.5
other sulphides”

13 Do Equivalent diameter Dsg in 2D pm 2.0-42.0

14  exposed_a Exposed perimeter association % 0.0-91.7

15 pya Grain gold association with % 0.0-94.8
pyrite

16  aspy.a Grain gold association with % 0.0-100
arsenopyrite

17  othermin _a Grain gold association with % 0.0-77.0
other minerals

18  accessibility Accessibility gold grain % 0.4-100

@ Heavy minerals: ilmenite. rutile. goethite; carbonates: siderite. ankerite;
other sulphides: galena. sphalerite. chalcopyrite.
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distribution [52].

For the study of correlations, Spearman’s rank correlation coefficient
was used [53] as it is a usual alternative to estimate linear correlations in
situations where there is joint non-normality between variables.
Spearman’s rank is a nonparametric rank statistic proposed by Charles
Spearman as a measure of the strength of an association between two
variables (Eq. (8)). Spearman correlation coefficient can be computed as
follows:

63 d;
n(n* —1)

p=1 ®

where p means Spearman’s rank correlation coefficient, d;, the differ-
ence between the two ranks of each observation n: number of observa-
tions. The Spearman rank correlation can take a value from +1 to —1. By
convention, classify Spearman’s correlation coefficients as weak: 0.0 to
0.3 or —0.3 to 0.0, moderate: 0.3 to 0.7 or —0.7 to —0.3. strong: >0.7 or
< —-0.7.

4. RESULTS AND DISCUSSION
4.1. Database description

One of the elements necessary for an accurate of machine learning
application is model information diversity. The diversity of the database
reflects the incorporation of measurement information characterizing
relations across different elements and variables, representing the
analyzed sample space, which must contain sufficient and necessary
information for prediction to be effective.

The statistical analysis is performed to find the mean, median,
standard deviation, coefficient of variation, variance and kurtosis of all
the 18-input chemical-mineralogical variables that were considered for
the model development. To test the normality of the data set, the Sha-
piro-Wilk test was applied (Table 3). The test rejects the hypothesis of
normality when the p-value is less than or equal to 0.05. Failing the
normality test allows you to state with 95 % confidence the data does not
fit the normal distribution. Passing the normality test only allows you to
state no significant departure from normality was found.

Kurtosis data is a measure that describes how heavily the tails of a
distribution differ from the tails of a normal distribution. The results
reinforce the non-normality of the data. Values positive suggests heavy
tails (leptokurtic) and negative values mean that there are light tails
(platykurtic). The tail heaviness or lightness is in comparison with the
normal distribution and it suggests whether the data distribution is
flatter or less flat than the normal distribution.

The results show that the p-values are below 0.05 indicating non-
normality of the data. The py_m variable was the only one that came
close, indicating a value of 0.04. Most of the variables approached 0.0.
SEM-IA mineralogy analysis was performed to obtain the detailed
quantitative mineralogical composition of samples (Fig. 4).

The mineralogical compositions show the considerable presence of
quartz, mica, and albite, which together represent, on average, 85 % of
the total sample composition. Sulfide minerals such as sphalerite,
galena, and chalcopyrite were not represented in the table due to erratic
occurrence being grouped into othersulph_m.

The main gold associations, assessed by SEM-IA are shown in Fig. 5
and expressed in terms of perimeter of contact with other minerals. The
gold with exposed perimeter (exposed_a) on bearing particles of pyrite
(pyrite_a), arsenopyrite (aspy_a), and a grouping of galena, sphalerite,
chalcopyrite represented by other sulphides (othersulph_a). The occur-
rence of gold is mainly associated with arsenopyrite and pyrite and in
very low proportions with silicates, carbonates, and heavy minerals.

The Spearman correlation matrix “r” of the variables obtained by
image analysis (SEM-AI) and chemical analysis show moderate corre-
lations (0.3-0.7) between accessibility, variable studied for prediction,
arsenic content (As_grade), sulfur content (S_grade), both showing a
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Table 3
Descriptive statistical analysis of the process mineralogy variables used as input for models and the hypothesis test (p-value) by Shapiro-Wilk.
# Input variable Mean Median standard deviation (9% Variance Kurtosis p-value
1 As_grade 2313.6 2156.5 1229.5 0.53 1511565 —0.69 0.00
2 S_grade 1.17 1.10 0.43 0.37 0.18 —-0.89 3.5e-05
3 Au_grade 0.61 0.55 0.35 0.54 0.11 —0.88 5.8e-06
4 qtz_m 45.5 43.8 9.09 0.20 82.58 1.85 2.7e-06
5 mica_m 36.9 37.9 6.22 0.17 38.66 1.16 6.7e-06
6 cltm 1.55 1.60 0.72 0.46 0.51 —0.87 0.00
7 alb_m 5.20 4.20 2.98 0.57 8.85 —0.33 3.4e-07
8 heavy_m 1.71 1.60 0.55 0.32 0.30 1.73 9.8e-07
9 carb_m 5.46 5.80 2.66 0.49 7.09 0.88 0.00
10 py_m 1.59 1.50 0.84 0.53 0.70 —0.47 0.04
11 aspy_m 0.61 0.40 0.52 0.86 0.27 -0.19 9.8e-11
12 othersulph_m 1.18 0.90 0.97 0.82 0.94 4.30 2.9e-14
13 Dso 14.4 10.0 10.2 0.71 104.3 0.21 1.2e-10
14 exposed_a 24.9 16.9 22.0 0.88 484.6 0.65 3.3e-11
15 py.a 31.9 31.8 20.6 0.65 425,2 -0.11 0.00
16 aspy_a 32.1 30.7 21.1 0.66 444.5 0.08 0.00
17 othermin a 13.3 9.10 14.3 1.07 203.4 5.57 9.9e-15
18 accessibility 60.7 68.2 28.5 0.47 813.5 —1.03 1.1e-07

Heavy_m: ilmenite, rutile, goethite; carbonates: siderite, ankerite; othersulph_m: galena, sphalerite and chalcopyrite. Othermin _a: quartz, albite, heavy minerals,

galena, sphalerite and chalcopyrite.

M qz_m [l mica_m

90
80
70
60
50
40
30
20
10

0

wt. (0/0)

—_— |

alo_m [l hmin_m [l carc_m [l py_m [ aspy_m [H othersulph_m

Outiier

«——95%
«— 75%

«— Median

— 25%

low

Mineralogy (%)

qtz:

quartz; mic: mica; clt: chlorite, alb: albite, hmin: heavy minerals (ilmenite, rutile) and goethite; carb:
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Fig. 4. The major composition of the sample was determined by SEM-IA mineralogy analysis (wt%).
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Fig. 5. The gold association by perimeter of contact is determined by SEM-IA
(wt%). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

correlation of 0.65 and 0.74, respectively and gold exposure (exposed_a)
of 0.7. As expected, accessibility is directly correlated with gold content
and exposed perimeter since the increase or decrease in accessibility is
related to the amount or the occurrence of gold grains. Spearman
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assessments also indicated that there is a good correlation between gold
and arsenic content (0.73), shown also with the mineral occurrence of
arsenopyrite (aspy_m).

Negative correlations occur with mica, heavy minerals (rutile,
ilmenite, and goethite), and a fact that may be associated with the low
occurrence of gold grains in these minerals. Fig. 6 shows the correlation
matrix (Spearman rank correlation) between 18 features.

4.2. Predictive performance

The predictive performance of four machine learning model methods
for the training, validation, and test data presented in Table 3 were
compared and evaluated in terms of better predictive performance for
the accessibility variable.

To evaluate the performance of the algorithm was employed a 10-
fold cross-validation to obtain a generalized model that does not over-
fit on training data. In 10-fold cross-validation on the training set, the
original samples were divided randomly into ten equal-sized subsets, of
which a unique fold was picked as a validation set for testing the model
and the remaining nine subsets were used as training data. This process
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Fig. 6. Spearman’s rank correlation map shows the correlation between the input variables.

was repeated ten times, with each of the ten subsets used exactly once as
the validation data [54].

The performance comparison based on RMSE, MAE, and R? for
training, validation, and testing, for regression is summarized in Table 4.
Random Forest algorithm outperformed all other regression algorithms
based on lower RMSE and MAE tests. The mean absolute error on test
data for the RF model was 11.76; RMSE of 14.48 and 0.77 of R%, indi-
cating good predictability. The k-NN model had the worst training error
in comparison with an R? of 0.65. RF and GP achieved good performance
on the training data.

Comparing the error associated with the regression, calculated by the
difference between the original and the predicted value. Fig. 7 shows, in
box form, the interquartile difference of the set of samples tested. The
low interquartile difference (Q3-Q1) shows a low data dispersion in the
range of 50 % of the data for the RF algorithm. The RF models produced
the lowest mean CV error, whereas the other models produced much
higher mean CV error.

The performance of predict vs. original accessibility data based on RF
model on the training and test data is given in Fig. 8. The prediction
indicates that, for the training tests, the data set presented an excellent
coefficient (0.97) between the predicted and original values. However,
the tested data showed a moderate coefficient of determination (R?
0.77).
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*K-NN: K-Nearest Neighbor; RF: Random Forest; SMOReg: Sequential minimal optimization for support vector machine;
GP: Gaussian Processes

Fig. 7. Box showing the regression error data between original and predicted
values

*K-NN: K-Nearest Neighbor; RF: Random Forest; SMOReg: Sequential minimal
optimization for support vector machine; GP: Gaussian Processes.

4.3. Variable importance

SHAP analysis investigates the impact of each variable on your
prediction model by showing its significance level. As shown in Fig. 9A,
each variable had a different level of contribution to the prediction
result of the accessibility variable.

SHAP assessments can determine the multiple correlations between
variables rank them based on their importance and represent the

Table 4

Scoring of 5 model regression performances based on MAE, R? and RMSE after training dataset, cross-validation (10 folds), and testing.
Algorithm Train Validation Test

R? RMSE MAE R? RMSE MAE R? RMSE MAE

K-NN 0.71 15.95 12.64 0.64 17.50 13.88 0.65 17.51 13.47
RF 0.97 5.61 4.59 0.71 15.59 12.83 0.77 14.48 11.76
SMOReg 0.72 15.08 11.80 0.65 16.95 13.78 0.69 16.50 13.44
GP 0.91 10.27 8.40 0.63 18.04 14.65 0.67 18.73 14.08

K-NN: K-Nearest Neighbor; RF: Random Forest; SMOReg: Sequential minimal optimization for support vector machine; GP: Gaussian Processes.
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average magnitude of their impacts. The assessment of the importance
ranking of the SHAP variable revealed a pattern similar to the Spearman
correlation assessment (Fig. 6), showing that the variables Au_grade,
exposed_a, D50, and S_grade indicate a significant impact on the model
result. All variables are shown in the order of global feature importance,
the first being the most important and the last being the least important
Fig. 9B.

The exposed_a, Au_grade, and As_grade variables have a high posi-
tive contribution when their values are high and a low negative
contribution on low values. The variables mica_m, othersulph_m,
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hmin_m, aspy_m, alb_m, othermin_a, carb_m, py_m, qtz_m, and clt. m
have almost no contribution to the prediction of whether their values are
high, or low.

The results obtained through the feature importance show that the
exposed_a variable has great weight in predicting accessibility, as shown
in Fig. 9A.

Due to the high level of importance of the exposed_a and Au_grade
variable in predicting accessibility, a correlation was generated that
relates the original gold content data and the predicted values of the
accessibility variable resulting from the application of the RF algorithm
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Fig. 10. Random Forest Original vs. predicted accessibility variable for training and test.
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that had the best performance among the 4 analyzed algorithms. The
correlation plot showed a good fit represented by R? (0.80) and a
polynomial equation of the curve was generated (Fig. 10A). The equa-
tion was applied for gold grades between 0.1 and 1.4 ppm (Fig. 10B)
generating a theoretical curve modeled by the RF algorithm.

The representation of the equation and the curve translates, in a
theoretical and adjusted context, the prediction of the variable of in-
terest (accessibility) by the gold grade. The theoretical curve using gold
grades can provide a good prediction or tendency of accessibility per-
centage as a function of the gold grade of the sample, especially when
using the variable gold grade, which is the variable predominant and
essential in a database of auriferous ores.

The main observed features or features importance (exposed_a,
Au_grade and As_grade) are directly related to the accessibility variable
with a degree of dependence also evidenced by the Spearman’s corre-
lation. The accessibility of a gold particle is denoted by a lesser or
greater degree of occurrence depending on its exposure to leaching
fluids, the gold and arsenic content since the gold grain is largely
associated with arsenopyrite. Therefore, accessibility is quantitatively
linked to gold and arsenic contents and their exposure.

5. Conclusions

The main objective of this work was to predict accessibility variables
through models using machine learning tools comparing four machine
learning methods. The use of WEKA freeware allowed the production of
fast and accurate machine learning models based on a mineralogical and
chemical database. The performance of four ML algorithms (K-NN, RF,
SMOReg, and GP) applied to a database allowed drawing the following
conclusions.

(a) The machine learning approaches employed satisfactorily pre-
dicted the accessibility in gold grains, that is, the ability of a
leachate fluid to access a portion of gold.

The random forest model outperforms the models in predicting
accessibility. It presented a coefficient of determination R? (0.77), MAE
(11.76), and RMSE (14.48).

(b) The validation K-fold (cross-validation 10-folds) confirms good
precision in the model approach also better performance of the
RF model towards the required outcome as opposed to the other
three models.

It was also reported from the SHAP analysis that the Au_grade,
exposed_a, and As_grade showed the highest contribution level
towards the prediction process of the model.

Spearman’s correlation coefficient is employed to check for
collinearity and can be used to accurately capture the statistical
dependence of input parameters. When compared with the
importance variables, the variables were similar to the Spearman
coefficient.

(©

(D

It remains for future studies to increase the systematic acquisition of
analytical data to increase the number of samples since the resulting
model is more suitable for visualizing trends and understanding the
spatial properties of the properties of the modeled process.

In conclusion, machine-learning algorithms have proven to be very
useful and versatile in many situations, but they also have some disad-
vantages that must be considered when creating and using these models,
especially concerning inaccurate or biased data, since the algorithm may
generate undesirable results.
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