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ARTICLE INFO ABSTRACT

Keywords: Purpose: The presence of lymphovascular invasion (LVI) influences the management and outcomes of patients
Lung cancer with clinical stage IA lung adenocarcinoma. The objective was the development of a deep learning (DL) signature
Adenocarcinoma

for the prediction of LVI and stratification of prognosis.

Methods: A total of 2077 patients from three centers were retrospectively enrolled and divided into a training set
(n = 1515), an internal validation set (n = 381), and an external set (n = 181). A -three-dimensional residual
neural network was used to extract the DL signature and three models, namely, the clinical, DL, and combined
models, were developed. Diagnostic efficiency was assessed by ROC curves and AUC values. Kaplan-Meier curves
and Cox proportional hazards regression analyses were conducted to evaluate links between various factors and
disease-free survival.

Results: The DL model could effectively predict LVI, shown by AUC values of 0.72 (95 %CI: 0.68-0.76) and 0.63
(0.54-0.73) in the internal and external validation sets, respectively. The incorporation of DL signature and
clinical-radiological factors increased the AUC to 0.74 (0.71-0.78) and 0.77 (0.70-0.84) in comparison with the
DL and clinical models (AUC of 0.71 [0.68-0.75], 0.71 [0.61-0.81]) in the internal and external validation sets,
respectively. Pathologic LVI, LVI predicted by both DL and combined models were associated with unfavorable
prognosis (all p < 0.05).

Conclusion: The effectiveness of the DL signature in the diagnosis of LVI and prognosis prediction in patients with
clinical stage IA lung adenocarcinoma was demonstrated. These findings suggest the potential of the model in
clinical decision-making.
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ResNet residual neural network

ROC receiver operating characteristic
RUL right upper lobe

VPI visceral pleural invasion.
Introduction

Lung cancer is a deadly malignancy with high global mortality. Lung
adenocarcinoma is the most prevalent histological subtype of non-small
cell lung cancers (NSCLCs) [1]. The proportion of clinical stage IA lung
cancer has increased by 58 % over the past decade [2]. They are usually
treated with lobectomy together with dissection of the mediastinal
lymph nodes [3]. Screening using low-dose computed tomography
(LDCT), the) has improved the diagnosis of early-stage disease, and thus
the sublobar resection may be a reasonable alternative to lobectomy for
stage IA NSCLC patients. Several studies have shown that in properly
selected patients, lobectomy and sublobar resection lead to comparable
survival outcomes [4,5]. However, it has been reported that clinical
stage IA patients may have recurrence and metastasis approaching 35 %
[6]. Inappropriate sublobar resections may lead to undesirable surgical
outcomes, even in patients with high-risk features. In addition, in terms
of the improved survival rate of patients with NSCLC, recent clinical
studies have shown that immunotherapy, either as a neoadjuvant or
adjuvant therapy, is more effective than chemoradiotherapy alone for
early-stage patients [7-10]. Since immunotherapy has made great
progress, neoadjuvant and adjuvant therapy plays an important role in
improving the survival rate of lung cancer. Thus, whether it is to guide
the choice of surgical scope or adjuvant treatment in the clinical stage IA
lung adenocarcinoma, the investigation of factors predicting metastasis
and recurrence following resection is urgently needed for the stratifi-
cation and management of these patients.

Lymphovascular invasion (LVI) represents the invasion of malignant
cells into arteries, veins, and lymph vessels and is known to be predictive
of disease recurrence [11-13]. Neoadjuvant chemotherapy is usually
recommended for the preoperative treatment of LVI-positive NSCLC, as
it can reduce tumor staging and increase the likelihood of better out-
comes [14,15]. It has also been found that lobectomy together with
more extensive lymph node dissection results in better outcomes
compared with sub-lobectomy in patients with LVI [16]. Thus, the ac-
curate detection of LVI would assist in determining patients likely to
benefit from individualized clinical decision-making. While previous
studies have indicated that tumor size or the consolidation tumor ratio
(CTR) may serve as indicators for assessing LVI, the tumor size cutoff
(4.5 cm) is not suitable for clinical stage IA lung cancer [17], and the
CTR is dubious (0.25 or 0.5) for those tumor size < 3 cm [18]. Therefore,
there has been limited investigation of the use of imaging for the pre-
diction of LVI in lung cancer.

The development of deep learning (DL) has altered the landscape of
imaging investigations, shifting from human interpretation to self-
taught machine analysis [19]. DL is effective in many fields, including
the detection and malignancy prediction of lung nodules on CT imaging
[20,21]. However, there is limited information on its use for predicting
LVI in lung cancer. Here, we investigated the construction of a DL model
for the prediction of clinical stage IA lung adenocarcinoma from CT
images to develop an effective, simpler, and machine-based means of
identifying patients who would benefit from clinical intervention.

Materials and methods

The ethical review board of Sun Yat-sen University Cancer Center
and the First Affiliated Hospital of Guangzhou Medical University
(B2022-293-01), the Fifth Affiliated Hospital of Sun Yat-sen University
(K107-1) approved this study, and waived the requirement for written
informed consent.
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Patients

The patients included in the study were selected from three hospitals
in China, specifically, center 1 (Sun Yat-sen University Cancer Center)
between 2010 and 2021, center 2 (The First Affiliated Hospital of
Guangzhou Medical University) between 2015 and 2019, and center 3
(The Fifth Affiliated Hospital of Sun Yat-sen University) between 2016
and 2018. The inclusion and exclusion criteria are presented in Fig. 1.
The final number of patients enrolled was 2077, including 1070, 826
and 181 patients from three centers, respectively. The participants from
centers 1 and 2 were assigned to the training (n = 1515) and internal
validation (n = 381) cohorts (ratio 8: 2) using simple randomization.
The cohort of 181 patients from center 3 was used as the external vali-
dation set. A previous report has described 603 patients from center 1
[22], focusing on the preoperative prediction of malignancy in solitary
lung nodules using a DL model.

Clinical and pathological data

The clinical and pathological features of the participants were ob-
tained, including age, sex, symptoms, smoking history (smoker or non-
smoker), and family history of cancer. Tumor staging was defined ac-
cording to TNM from the 8th edition of the American Joint Committee of
Cancer (AJCC) [23] and histopathological classifications were according
to the International Association for the Study of Lung Cancer/American
Thoracic Society/ European Respiratory Society classification system
[24]. Data on LVI, visceral pleural invasion (VPI), lymph node metas-
tasis, and distant metastasis status were acquired from pathological re-
ports. LVI was defined as the presence of tumor cells in lymphatic,
arterial or venous vessels in the surrounding pulmonary tissue that was
visible on microscopy. VPI was classified based on the hematox-
ylin-eosin-stained slice: PLO (lack of pleural invasion beyond the elastic
layer), PL1 (invasion beyond the elastic layer), PL2 (invasion into the
surface of the visceral pleura), and PL3 (parietal pleura involvement).
When hematoxylin-eosin staining indicated that the lesion was adjacent
to the pleura, and it was uncertain whether the visceral pleura was
involved, an elastic stain can be used to determine whether VPI was
present. The elastic stain was not used at our institution to reassess VPI
during the study inclusion period. PL1 and PL2 could not be recorded
separately in this study.

CT image acquisition

CT scans were conducted from the apex to the base of the lung.
Supplementary Table E1 shows the details of the scanning and recon-
struction parameters.

Evaluation of radiological features

The radiological features were evaluated by three radiologists with
5, 10, and 15 years of experience, respectively, in thoracic imaging and
diagnosis. They were blinded to the diagnosis and data of the patients,
and interpretation was done by consensus. The specific characteristics
evaluated were the maximum diameter of the tumor, the consolidation
maximum diameter, CTR, the tumor location (right upper, middle, or
lower lung, or left upper, middle, or lower lung), the tumor density
(pure-solid or subsolid), shape (regular or irregular), boundary (clear or
vague), presence or absence of lobulation (defined as irregular un-
dulations in the margin of the nodule), spiculation (the extension of
strands, 2 mm or greater, from the tumor margin to the surrounding
parenchyma but not into the pleura), vacuole sign (air attenuation,
either ovoid or round, < 5 mm within the tumor), cavity (air attenua-
tion, either ovoid or round, > 5 mm within the tumor), air bronchogram
(presence of air-filled bronchi within the tumor), vessel convergence
(convergence of multiple blood vessels directed to the tumor), and
pleural indentation (presence of linear or triangular strands from the
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Fig. 1. Flowchart of patient selection. LVI = lymphovascular invasion.

tumor to the pleura). CT images were viewed in lung windows (level,
—600 Hounsfield units [HU]; width, 1500 HU).

Data splitting and pretreatment

Learning and selection of the model were conducted in the training
cohort while model performance was evaluated in the internal and
external validation cohorts. Five-fold stratified cross-validation was
used for both cohorts; details are shown in the first part of Fig. 2. For
developing the DL system, the CT data samples were preprocessed. The
details about the CT image preprocessing are shown in the Appendix E1
(Supplemental Material).

3D-ResNet-9 model architecture

The Residual Neural Network algorithm was used to classify the
images into nine layers (3D-ResNet-9), allowing the extraction of spe-
cific features for prediction [25]. The 3D-ResNet-9 model is one of the
methods used for a residual neural network that functions in a similar
manner to other residual neural networks but differs in the number of
layers. The main structure of 3D-ResNet-9 consisted of the following
parts:

(a) Initial convolution layer: The 3D-ResNet-9 structure began with a
3 x 3 convolution layer with step size 1, followed by a maximum
pool (maxpool) layer. This part of the model was responsible for the
extraction of preliminary features.

(b) Residual blocks: Four residual blocks formed the main compo-
nents of the 3D-ResNet-9. Each residual block contained two 3D

convolutional layers that operated by batch normalization (BN) and
ReLU activation. BN refers to the normalization of batch data, in
which a feature map of a data batch function with a distribution rule
has an average value of 0 and variance of 1. To reduce resource
consumption and training time, the number of channels was reduced
to 16, 32, 64, and 96, respectively. The input was then connected
directly to the output of these convolutional layers via a skip join
(also called an identity join). This design allowed the network to
learn the residual mapping between input and output, thus avoiding
the problem of disappearing or exploding gradients.

(c) Average global pool (avgpool) layer: Following the residual
blocks, 3D-ResNet-9 used an avgpool layer in place of the fully
connected layer. This significantly reduced the number of parame-
ters required by the model, thus avoiding overfitting. A full
connection layer was used after the avgpool layer for the output of
the results of the final classification.

The second part of Fig. 2 illustrates the 3D-ResNet-9 architecture.
The images were processed into various layers allowing the extraction of
features for prediction. A significant advantage of the 3D-ResNet-9 al-
gorithm is that it avoids the problem of vanishing gradients, rendering it
more efficient in comparison with other algorithms.

Model construction and validation

LVI status was used as the predicted outcome, and a binary classifi-
cation model based on DL was designed, namely, the fully connected
neural network [26]. The classifier used a one-dimensional array as
input, with the output being a binary score, which was distinguished
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Fig. 2. Flowchart of the study design. BN = batch normalization, LVI = lymphovascular invasion, ResNet = residual neural network.

according to the appropriate threshold value. The category was defined
as 1 when the score was greater than the threshold value and if not, the
category was described as 0. The third part of Fig. 2 shows the complete
architecture of the fully connected neural network. An Adam optimizer
was used for training. The learning rate was 0.0005, and the batch size
was set to 16. The loss function adopted a weighted L1 norm, and the
weight was set according to the positive proportion. Tne model was then
constructed to reflect the improvement in classification by the integra-
tion of multidimensional features. The model reached convergence
within an average of five training cycles. The model was then validated
in both the internal and external validation sets. To improve classifica-
tion performance via the integration of multidimensional features, a
clinical model, a DL. model, and a combined model were established. Ten
features were found to be correlated with LVI status in the univariate
regression analyses (Table 2) and placed into model for automatic
analysis. The DL model was established using 768 high-quality DL fea-
tures extracted from 3D-ResNet-9. The combined model was constructed
by the insertion of the clinical and radiological factors into the DL model
through the fully connected neural network which was designed as a
single hidden layer, with the neuron number in the layer set to 1024. The
neuron number in the input layer was set according to the number of
input features while the number in the output layer was set to 1,
indicative of positive output probability. The third part of Fig. 2 shows
the model construction.

Gradient-weighted class activation mapping (Grad-CAM) was used to
determine the region of the CT image that contributed most to predic-
tion [27] and the results were visualized in heatmaps. The Grad-CAM
details are shown in the Appendix E2 (Supplemental Material).

Follow-up and survival

Following surgery, the patients were evaluated by CT every six
months for the initial two years and every 12 months thereafter. Overall,
591 patients were followed up for a minimum of five years. The study
endpoint was defined as disease-free survival (DFS), defined as the in-
terval between the surgery and recurrence, metastasis, death, or final

follow-up. Significant variables from the univariate analysis were then
incorporated into the multivariate analysis for the determination of in-
dependent DFS predictors. Kaplan-Meier curves were plotted and dif-
ferences between the high- and low-risk groups were examined by log-
rank tests.

Statistical analysis

Data were analyzed using Python version 3.7.0, PyTorch version
1.6.0, CUDA version 9.2, and R version 3.5.3. Clinicopathological and
radiological characteristics are expressed as means + standard de-
viations for continuous variables and numbers (percentages) for cate-
gorical variables. Inter-group comparisons were evaluated by unpaired
t-tests, chi-squared tests, or Mann-Whitney U tests. Inter-observer
agreement (readers 1, 2, and 3) was evaluated by Cohen’s kappa test
and intraclass correlation coefficients. Receiver operating characteristic
(ROCQ) curves, the areas under the curves (AUCs) and the DeLong test
were used to compare the predictive performance of the models. The
evaluation matrix included accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1 scores.
Calibration curves and box plots were used to determine the degree of fit
of the models. Survival differences were analyzed by Kaplan-Meier
curves and log-rank tests. All significance levels were two-tailed with
p < 0.05 considered statistically significant.

Results
Patient characteristics

Details of the participants, including clinical, radiological, and
pathological features, are provided in Table 1. There was good agree-
ment between the three chest radiologists in the evaluation of the
radiological characteristics (p < 0.05) (Supplementary Tables E2 and
E3). No significant differences were observed in the patient character-
istics between the training and internal validation cohorts (p > 0.05). It
was found that LVI-positive and -negative participants in three cohorts
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Table 1
Clinical, Pathological, and Radiological Characteristics
Training Set pl Value  Internal validation Set pl Value  Internal validation Set pl Value p2
(n=1515) (n=381) (n=181) Value
LVI Positive LVI Negative LVI LVI LVI LVI
(n=232) (n=1283) Positive Negative Positive Negative
(n=57) (n=324) (n=10) (n=171)
A. Clinical characteristics
Age* 58.8+10.6 58.4+9.79 0.660 60.5+11.2 57.6+9.86 0.072 57.8+10.2 59.2+10.4 0.690 0.452
Sex 0.149 0.417 0.927 0.562
Male 119 (51.3 589 (45.9 %) 31 (54.4 154 (47.5 4 (40.0 %) 80 (46.8 %)
%) %) %)
Female 113 (48.7 694 (54.1 %) 26 (45.6 170 (52.5 6 (60.0 %) 91 (53.2 %)
%) %) %)
Symptom 0.145 0.856 0.823 0.333
Yes 134 (57.8 809 (63.1 %) 36 (63.2 212 (65.4 2 (20.0 %) 21 (12.3 %)
%) %) %)
No 98 (42.2 %) 474 (36.9 %) 21 (36.8 112 (34.6 8 (80.0 %) 150 (87.7
%) %) %)
Smoking history 0.277 0.985 0.113 0.714
Ever smoker 68 (29.3 %) 329 (25.6 %) 15 (26.3 89 (27.5 %) 0 (0 %) 48 (28.1 %)
%)
Never smoker 164 (70.7 954 (74.4 %) 42 (73.7 235 (72.5 10 (100 %) 123 (71.9
%) %) %) %)
Family history of cancer 0.242 0.170 0.997 0.965
Yes 25 (10.8 %) 178 (13.9 %) 4 (7.0 %) 48 (14.8 %) 1(10.0 %) 8 (4.7 %)
No 207 (89.2 1105 (86.1 53 (93.0 276 (85.2 9 (90.0 %) 163 (95.3
%) %) %) %) %)
Clinical T stage <0.001 <0.001 0.005 0.999
cTla 5 (2.2 %) 362 (28.2 %) 2 (3.5 %) 90 (27.8 %) 1 (10.0 %) 56 (32.7 %)
cT1b 97 (41.8 %) 593 (46.2 %) 20 (35.1 154 (47.5 2 (20.0 %) 75 (43.9 %)
%) %)
cTlc 130 (56.0 328 (25.6 %) 35 (61.4 80 (24.7 %) 7 (70.0 %) 40 (23.4 %)
%) %)
B. Pathological characteristics
Histologic subtype <0.001 <0.001 0.533 0.563
Lepidic predominant 5 (2.2 %) 163 (12.7 %) 0 (0 %) 48 (14.8 %) 0 (0 %) 6 (3.5 %)
Acinar predominant 134 (57.8 777 (60.6 %) 32 (56.1 180 (55.6 4 (40.0 %) 84 (49.1 %)
%) %) %)
Papillary predominant 39 (16.8 %) 160 (12.5 %) 7 (12.3 %) 45 (13.9 %) 4 (40.0 %) 47 (27.5 %)
Micropapillary predominant 15 (6.5 %) 20 (1.6 %) 4 (7.0 %) 12 (3.7 %) 0 (0 %) 3 (1.8 %)
Solid predominant 23 (9.9 %) 61 (4.8 %) 10 (17.5 13 (4.0 %) 1(10.0 %) 10 (5.8 %)
%)
Mucous predominant 7 (3.0 %) 37 (2.9 %) 2 (3.5 %) 13 (4.0 %) 0(0%) 5 (2.9 %)
Special type 1 (0.4 %) 5 (0.4 %) 0 (0 %) 1 (0.3 %) 1 (10.0 %) 2 (1.2 %)
MIA 0 (0 %) 10 (0.8 %) 0 (0 %) 2 (0.6 %) 0 (0 %) 1 (0.6 %)
AIS 0 (0 %) 1 (0.1 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
Non-classified 8 (3.4 %) 49 (3.8 %) 2 (3.5%) 10 (3.1 %) 0 (0 %) 13 (7.6 %)
Pathologic stage <0.001 <0.001 <0.001 0.838
1A 93 (40.1 %) 1032 (80.4 23 (40.4 263 (81.2 6 (60.0 %) 139 (81.3
%) %) %) %)
1B 50 (21.6 %) 164 (12.8 %) 14 (24.6 43 (13.3 %) 1 (10.0 %) 16 (9.4 %)
%)
1IB 32 (13.8 %) 38 (3.0 %) 9 (15.8 %) 8 (2.5 %) 0 (0 %) 5 (2.9 %)
1A 56 (24.1 %) 45 (3.5 %) 11 (19.3 10 (3.1 %) 2 (20.0 %) 6 (3.5 %)
%)
111B 0 (0 %) 1 (0.1 %) 0 (0 %) 0 (0 %) 1 (10.0 %) 0 (0 %)
IVA 1 (0.4 %) 3 (0.2 %) 0 (0 %) 0 (0 %) 0 (0 %) 5 (2.9 %)
VPI <0.001 <0.001 0.823 0.949
Yes 91 (39.2 %) 196 (15.3 %) 21 (36.8 50 (15.4 %) 2 (20.0 %) 21 (12.3 %)
%)
No 141 (60.8 1087 (84.7 36 (63.2 274 (84.6 8 (80.0 %) 150 (87.7
%) %) %) %) %)
Lymph node metastasis <0.001 <0.001 0.036 0.477
Yes 89 (38.4 %) 84 (6.5 %) 20 (35.1 18 (5.6 %) 3(30.0 %) 11 (6.4 %)
%)
No 143 (61.6 1199 (93.5 37 (64.9 306 (94.4 7 (70.0 %) 160 (93.6
%) %) %) %) %)
Distant metastasis 1.000 0.325 1.000 1.000
Yes 1 (0.4 %) 3 (0.2 %) 1 (1.8 %) 0 (0 %) 0 (0 %) 5 (2.9 %)
No 231 (99.6 1280 (99.8 56 (98.2 324 (100 %) 10 (100 %) 166 (97.1
%) %) %) %)
C. Radiological characteristics
Whole maximum diameter* 21.5+5.22 18.6+5.87 <0.001 21.3+4.72 18.4+5.89 <0.001 23.3+7.48 19.9+7.49 0.194 0.492
Consolidation maximum 20.945.51 15.4+7.06 <0.001 20.9+5.49 15.4+6.96 <0.001 22.2+6.08 14.9+7.67 0.004 0.921
diameter*
CTR* 0.97+0.11 0.82+0.25 <0.001 0.98+0.12 0.83+0.25 <0.001 0.97+0.10 0.77+0.30 <0.001 0.608

(continued on next page)
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Training Set pl Value  Internal validation Set pl Value  Internal validation Set pl Value p2
(n=1515) (n=381) (n=181) Value
LVI Positive LVI Negative LVI LVI LVI LVI
(n=232) (n =1283) Positive Negative Positive Negative
(n=57) (n=324) (n=10) (n=171)
Location 0.277 0.635 0.382 0.258
RUL 76 (32.8 %) 444 (34.6 %) 14 (24.6 108 (33.3 6 (60.0 %) 67 (39.2 %)
%) %)
RML 18 (7.8 %) 98 (7.6 %) 5 (8.8 %) 29 (9.0 %) 0 (0 %) 13 (7.6 %)
RLL 41 (17.7 %) 240 (18.7 %) 15 (26.3 73 (22.5 %) 0 (0 %) 28 (16.4 %)
%)
LUL 69 (29.7 %) 301 (23.5 %) 16 (28.1 69 (21.3 %) 2 (20.0 %) 44 (25.7 %)
%)
LLL 28 (12.1 %) 200 (15.6 %) 7 (12.3 %) 45 (13.9 %) 2 (20.0 %) 19 (11.1 %)
Density <0.001 <0.001 0.196 0.392
Subsolid 25 (10.8 %) 514 (40.1 %) 3(5.3%) 123 (38.0 8 (80.0 %) 92 (53.8 %)
%)
Pure-solid 207 (89.2 769 (59.9 %) 54 (94.7 201 (62.0 2 (20.0 %) 79 (46.2 %)
%) %) %)
Shape 0.342 0.287 0.806 0.933
Regular 4 (1.7 %) 40 (3.1 %) 0 (0 %) 12 (3.7 %) 3(30.0 %) 67 (39.2 %)
Irregular 228 (98.3 1243 (96.9 57 (100 %) 312 (96.3 7 (70.0 %) 104 (60.8
%) %) %) %)
Boundary 0.208 0.100 0.418 0.570
Clear 48 (20.7 %) 318 (24.8 %) 23 (40.4 75 (23.1 %) 2 (20.0 %) 65 (38.0 %)
%)
Vague 184 (79.3 965 (75.2 %) 34 (59.6 249 (76.9 8 (80.0 %) 106 (62.0
%) %) %) %)
Vacuole sign 0.775 0.977 1.000 0.608
Yes 44 (19.0 %) 230 (17.9 %) 9 (15.8 %) 55 (17.0 %) 2 (20.0 %) 30 (17.5 %)
No 188 (81.0 1053 (82.1 48 (84.2 269 (83.0 8 (80.0 %) 141 (82.5
%) %) %) %) %)
Cavity 0.369 0.160 1.000 0.307
Yes 9 (3.9 %) 33 (2.6 %) 6 (10.5 %) 9 (2.8 %) 0 (0 %) 2(1.2%)
No 223 (96.1 1250 (97.4 51 (89.5 315 (97.2 10 (100 %) 169 (98.8
%) %) %) %) %)
Spiculated sign <0.001 <0.001 0.093 0.455
Yes 185 (79.7 791 (61.7 %) 41 (71.9 196 (60.5 8 (80.0 %) 81 (47.4 %)
%) %) %)
No 47 (20.3 %) 492 (38.3 %) 16 (28.1 128 (39.5 2 (20.0 %) 90 (52.6 %)
%) %)
Lobulated sign <0.001 <0.001 0.120 0.738
Yes 226 (97.4 1098 (85.6 54 (94.7 282 (87.0 10 (100 %) 124 (72.5
%) %) %) %) %)
No 6 (2.6 %) 185 (14.4 %) 3(5.3%) 42 (13.0 %) 0 (0 %) 47 (27.5 %)
Air bronchogram 0.102 0.044 1.000 0.413
Yes 40 (17.2 %) 286 (22.3 %) 7 (12.3 %) 83 (25.6 %) 4 (40.0 %) 75 (43.9 %)
No 192 (82.8 997 (77.7 %) 50 (87.7 241 (74.4 6 (60.0 %) 96 (56.1 %)
%) %) %)
Vessel convergence <0.001 <0.001 0.082 0.649
Yes 219 (94.4 1004 (78.3 56 (98.2 247 (76.2 6 (60.0 %) 49 (28.7 %)
%) %) %) %)
No 13 (5.6 %) 279 (21.7 %) 1 (1.8 %) 77 (23.8 %) 4 (40.0 %) 122 (71.3
%)
Pleural indentation <0.001 <0.001 0.951 0.668
Yes 193 (83.2 892 (69.5 %) 46 (80.7 222 (68.5 3(30.0 %) 62 (36.3 %)
%) %) %)
No 39 (16.8 %) 391 (30.5 %) 11 (19.3 102 (31.5 7 (70.0 %) 109 (63.7

%)

%)

%)

Note. — Unless otherwise noted, values are numbers of patients, with percentages in parentheses. AIS = adenocarcinoma in situ, CTR = consolidation tumor ratio, LLL
= left lower lobe, LUL = left upper lobe, LVI = lymphovascular invasion, MIA = minimally invasive adenocarcinoma, RLL = right lower lobe, RML = right middle lobe,
RUL = right upper lobe, VPI = visceral pleural invasion.

" Data are means + standard deviations. The P1 value was derived from the univariate association analyses between LVI positive and LVI negative. P2 value was
derived from univariate association analyses between the training and internal validation sets.

differed significantly in terms of clinical T stage, pathological stage,

Model efficiency evaluation

lymph node metastasis, consolidation maximum diameter of the tumor,

and CTR (p < 0.05). After the univariate analysis, multivariate analysis
found that the presence of CTR was the independent predictor of LVI
status (p < 0.05). Table 2 lists the results of the univariate and multi-

variate analyses for training cohort.

As shown in Table 3, the combined model had AUCs of 0.76 (95 %
confidence interval [CI]: 0.74-0.77), 0.74 (95 %CI: 0.71-0.78), and 0.77
(95 %CI: 0.70-0.84) for the training, internal, and external validation
sets, respectively, which were greater than those for the clinical (0.74
[95 %CI: 0.73-0.76], 0.71 [95 %CIL: 0.68-0.75], and 0.71 [95 %CI:
0.61-0.81], respectively) and DL models (0.76 [95 %CI: 0.75-0.78],
0.72 [95 %CI: 0.68-0.76], and 0.63 [95 %CIL: 0.54-0.73], respectively).
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Table 2
Univariate and Multivariate Logistic Regression Analyses of Factors in the
Training Set

Factors Univariate logistic Multivariate logistic
regression regression
OR (95 %CI) p-value OR (95 %CI) p-
value
Age 1.010 0.176
(0.996-1.024)
Sex 0.843 0.234
(0.637-1.117)
Symptom 0.819 0.169
(0.616-1.090)
Smoking history 1.152 0.373
(0.840-1.564)
Family history of 0.697 0.117
cancer (0.434-1.074)
Clinical T stage
cT1b 4.459 0.001 1.257 0.656
(1.970-12.80) (0.498-3.865)
cTlc 11.11 <0.001 1.936 0.231
(4.957-31.76) (0.702-6.351)
Whole maximum 1.077 <0.001 1.231 0.074
diameter (1.051-1.104) (0.990-1.570)
Consolidation 1.109 <0.001 8.218 0.100
maximum diameter (1.085-1.134) (0.641-1.029)
Density 6.062 <0.001  2.296 0.101
(3.939-9.798) (0.878-6.483)
CTR 77.72 <0.001 805.6 0.018
(24.92-294.2) (5.024-3.611)
Shape 2.557 0.119
(0.921-10.62)
Boundary 1.065 0.710
(0.767-1.500)
Vacuole sign 1.104 0.585
(0.766-1.563)
Cavity 1.780 0.119
(0.820-3.547)
Calcification 1.118 0.886
(0.171-4.278)
Spiculated sign 2.592 <0.001 1.131 0.552
(1.853-3.697) (0.757-1.712)
Lobulated sign 6.239 <0.001 1.557 0.357
(2.981-16.00) (0.648-4.391)
Air bronchogram 0.664 0.031 0.832 0.399
(0.452-0.953) (0.538-1.265)
Vessel convergence 5.154 <0.001 1.507 0.259
(2.965-9.868) (0.763-3.204)
Pleural indentation 2.265 <0.001 9.667 0.877

(1.580-3.328) (0.633-1.500)

Note. — CI = confidence interval, CTR = consolidation tumor ratio, OR = odds
ratio.

Fig. 3 illustrates the ROC curves of the three models for three sets for LVI
prediction. However, irrespective of the cohort, DeLong’s test indicated
that the models had relatively similar AUCs (p > 0.05) (Supplementary
Table E4). Fig. 4 shows that the output from all three models was
significantly associated with LVI (all p < 0.05), supporting the reliability

Table 3
Prediction Performance of the Three Models
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of the results in predicting LVI. We then comprehensively evaluated the
accuracy, sensitivity, specificity, PPV, NPV, and F1 scores of the three
models. The details are shown in Table 3. These results indicate that DL
features and clinical characteristics complement each other. The cali-
bration curves are provided in supplementary Figure E1.

Fig. 5 presents the clinicopathological information (A), CT images
(B), and heatmaps (C) of both LVI-positive and -negative patients with
comparable pathological staging. However, LVI-positive patients with
bone metastases had significantly shorter DFS than LVI-negative pa-
tients without recurrence or metastasis. The heatmaps indicated differ-
ences between tumors with LVI-positivity and LVI-negativity. The areas
that were most associated with LVI prediction were the interface be-
tween the tumor and its adjacent parenchyma, and the tumor region
contacting the adjacent pleura. The DL features extracted from the im-
ages were thus helpful in identifying the LVI status, assisting further in
the risk stratification of the patients.

Survival prediction

In total, 591 participants were assessed in the survival comparisons.
The median DFS duration of the participants was 66.6 months, with 163
of 591 (27.6 %) patients showing poor outcomes after surgery. Partici-
pants were followed up for a median of 68.7 months. The univariate
analysis indicated that DFS was associated with age, density, CTR,
clinical T stage, lymph node metastasis, VPI, pathologic LVI, and LVI
predicted by both the DL and combined models. After multivariate
analysis, age, CTR, clinical T1c stage, pathologic LVI, LVI predicted by
both DL model and combined model were independent predictors of
DFS. The results of both univariate and multivariate analyses of three
cohorts are provided in Tables 4 and 5 while the survival curves are
illustrated in Fig. 6. The Kaplan-Meier analysis found that the patho-
logical LVI status, LVI predicted by the DL model, and the combined
model output and were effective predictors of patient mortality (p <
0.05 for all). However, LVI predicted by the clinical model could not be
used as a predictor of DFS.

The median DFS of patients with and without pathological LVI was
77.4 and 99.1 months, respectively (p < 0.001) (Fig. 6a), with corre-
sponding predicted 5-year survival rates of 70.2 % and 81.2 %. Patients
were additionally assigned to low- and high-risk groups using the clin-
ical, DL, and combined models. The median DFS of patients predicted to
be high- and low-risk using the clinical model was 92.4 and 95.8 months,
respectively (p = 0.53) (Fig. 6b), with corresponding predicted 5-year
survival rates of 78.2 % and 80.0 %. As such, LVI status as predicted
using the clinical model was not independently predictive of survival in
clinical stage IA lung adenocarcinoma patients. The median DFS of pa-
tients predicted to be high- and low-risk using the DL model was 87.7
and 103.2 months, respectively (p = 0.01) (Fig. 6¢), with corresponding
5-year survival rates of 74.0 % and 84.4 %. The median DFS of patients
predicted to be high- and low-risk using the combined model, the me-
dian DFS was 82.4 and 94.5 months, respectively (p < 0.001) (Fig. 6d),
with corresponding 5-year survival rates of 75.2 % and 86.7 %. Kaplan-

Models Dataset AUC (95 % CI) ACC SEN SPE PPV NPV F1 score

Clinical model Training set 0.74 (0.73-0.76) 0.62 0.79 0.59 0.26 0.94 0.39
Internal validation set 0.71 (0.68-0.75) 0.63 0.76 0.61 0.28 0.94 0.40
External validation set 0.71(0.61-0.81) 0.62 0.88 0.60 0.13 0.99 0.22

DL model Training set 0.76 (0.75-0.78) 0.64 0.79 0.63 0.28 0.94 0.42
Internal validation set 0.72 (0.68-0.76) 0.63 0.79 0.60 0.27 0.94 0.40
External validation set 0.63(0.54-0.73) 0.50 0.86 0.48 0.09 0.98 0.16

Combined model Training set 0.76 (0.74-0.77) 0.63 0.81 0.60 0.27 0.95 0.40
Internal validation set 0.74 (0.71-0.78) 0.68 0.77 0.60 0.31 0.94 0.43
External validation set 0.77(0.70-0.84) 0.72 0.84 0.70 0.15 0.98 0.26

Note. — ACC = accuracy, AUC = area under the receiver operating characteristic curve, CI = confidence interval, DL = deep learning, NPV = negative predictive value,

PPV = positive predictive value, SEN = sensitivity, SPE = specificity.
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(a) ROC curves in the training set

(b) ROC curves in the internal validation set
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(c) ROC curves in the external validation set
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Fig. 3. Predictive performance of the DL signature in the identification of LVI. ROC curves of the three models for the prediction of lymphovascular invasion in the
training set (a), internal validation set (b), and external validation set (c). AUC = area under the curve, CI = confidence interval, DL = deep learning, ROC = receiver

operating characteristic.

Meier analyses indicated that both the combined and DL models were
capable of readily identifying patients facing a higher risk of mortality.

Discussion

Here, the effectiveness of a DL signature derived from 3D-ResNet-9 of
CT was investigated for predicting the outcomes of patients with clinical
stage IA lung adenocarcinoma involving LVI. It was found that the
combined model integrating DL with clinical-radiological characteristics
achieved the best performance (AUCs = 0.76, 0.74 and 0.77 for the
training, internal, and external validation sets, respectively). Despite a
lack of significant advantage of the combined model over the DL and
clinical models, the DL signature showed comparable predictive efficacy
with clinical-radiological characteristics. Therefore, even the use of the
DL model alone provided a simple and more accurate prediction of LVI
from CT. High-risk status as predicted with the DL model (HR for DFS,
2.396 [p = 0.009]) or the combined model (HR for DFS, 2.439 [p =
0.006]) and the presence of pathologic LVI (HR for DFS, 1.949 [p
<0.001]) were all found to be related to poor prognostic outcomes.
Furthermore, LVI status as predicted by both the DL and combined
models was independently associated with patient DFS in multivariate
analyses, i.e., shortened DFS [11-13], which was consistent with our
findings.

Primary tumors are connected to lymph nodes through peritumoral
lymphatic vessels and arteriovenous connections, which facilitate
metastasis [28,29]. Thus, early-stage lung cancer accompanied by
LVI-positivity requires consideration in terms of appropriate surgical
scope [4,5,28,29]. Although the benefits of adjuvant chemotherapy are
now recognized for stage II or IIl NSCLC, there is no consensus on its use
for stage IA [30]. The present study aimed to predict the LVI status
preoperatively, which may provide evidence of appropriate therapeutic
regimens. This study appears to be the first investigation to incorporate
ResNet features with preoperative CT to determine the LVI status.
Notably, this DL model provides a simpler means of identifying patients
with a high risk of tumor recurrence even in stage IA disease, thus
providing information on the biology of the primary tumor and further
information for accurate prediction of prognosis. Beck et al developed a
3D convolutional neural network using a transfer learning algorithm to
predict LVI or nodal involvement (AUCs of 0.63-0.72) [31], which dif-
fers from the DL features used in this study that only focused on the LVI
status. The present results allow the excavation of hidden features that
are not available to clinical examinations and imaging, thus providing a
more accurate interpretation of the relationship between CT imaging
and LVI status.

Recent studies have shown that the lung parenchyma surrounding
the primary tumor may be involved in tumor invasion and metastasis
[32,33]. Zuo et al [34] and Yang et al [35] concentrated on CT intra-
tumor features associated with LVI and outcomes. On the basis of the
previous two studies, Chen et al extracted CT-based radiomics features
from 145 patients, and found that the gross tumor volume incorporating

peritumoral regions 9 mm from the tumor can predict LVI in NSCLC
(AUCs of 0.67-0.82) [36]. However, these findings required further
verification with large samples. Fig. 4 suggests the possibility that
additional factors not visible to the naked eye may also affect tumor
invasiveness at the tumor-parenchyma and tumor-pleura interfaces. This
investigation used a large sample of patients from two centers, and the
model was found to be both robust and generalizable. We believe that
such an approach integrating DL models and available
clinical-radiological information can be applied to the development of
similar models in medicine.

The multivariate analysis demonstrated that preoperative CTR could
independently predict LVI, as observed by a previous study [37,38]. CTR
has also been observed to predict prognosis following surgery or radi-
ation treatment for NSCLC, as well as having the ability to predict lymph
node metastasis and VPI. The findings of the long-term JCOG 0201 trial
indicated that limited surgery could result in satisfactory outcomes in
patients with predominantly GGO lung tumors with CTR values of 0.5 or
less and sizes between 2 and 3 cm [39]. Thus, higher CTR values are
indicative of increased proliferation and invasiveness of the cancer cells,
together with an increased risk of LVI development.

There has been intense emphasis on the part played by LVI in NSCLC
in the TNM staging manual. Several studies have demonstrated that LVI
adversely impacts survival in NSCLC [40,41]. Here, LVI was observed to
be an independent risk factor for DFS in univariate regression analysis.
LVI was then used to stratify the patients and the predictive ability of
three models for DFS was investigated. The LVI predictions made by DL
and combined models were also found to be independently associated
with DFS in multivariate analyses. Also, the Kaplan-Meier analysis found
that the output of DL and combined models clearly separated the lung
adenocarcinoma patients into high- and low-risk mortality groups. The
results of prognostic analysis in this study were consistent with previous
study [30,32]. However, LVI predicted by the clinical model is not a
prognostic predictor. This indicates that the DL signature, in comparison
with clinical and radiological features will assist in the assessment of the
survival risk in individual patients, as well as providing a reference for
appropriate treatment.

In recent years, the application of DL in medical imaging has made
significant advances in the field of tumor evaluation, including tumor
diagnosis, clinical grading and staging, genetic analyses, efficacy eval-
uation, and prognosis prediction [19-21,42-44]. This study concentrated
on the prediction of LVI status in clinical stage IA lung adenocarcinoma
through the deep mining of high-throughput, noninvasive, and
comprehensive features in CT images, which reflect the spatial hetero-
geneity of the lesions and have important prognostic value for disease
treatment. Currently, the main challenge faced by DL models is that of
biological interpretability. Traditional manual radiomics features have
complete formulas and definitions that are closely related to the se-
mantic features of lesions described in medical imaging diagnosis.
Therefore, these can be used as an approximate explanation of the po-
tential biological significance of radiomics features. However, DL
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Fig. 4. Difference in the DL signature between Clinical Stage IA lung adenocarcinoma patients with LVI and without LVI. Boxplots showing the lymphovascular
invasion outputs of the clinical model (a, d, g), DL model (b, e, h), and combined model (c, f, i) in the training set (a—c), internal validation set (d-f), and external
validation set (g-i). The outputs of all three models were significantly associated with lymphovascular invasion (all p < 0.05). DL = deep learning, LVI = lym-

phovascular invasion.

features represent a "black box" [45] as they lack accurate and complete
formulas and definitions, making them difficult to interpret. A common
method used is their reverse interpretation using DL features in heat-
maps which can provide information on the clinical significance of
specific regions of the model. The model output of the current study is
shown in the heatmap in Fig. 5, this presentation solves the problem of
the biological interpretability of the model to a certain extent. However,
the heatmap cannot truly meet the requirements of biological

interpretability due to the large amount of error. In addition, some im-
aging features with high predictive ability may be association with
increased expression of specific genes or proteins. The biological inter-
pretability of DL models could thus be further improved by exploring the
relationships between these genes, proteins and clinical endpoint events
[46]. In the future, more research on the application of DL in medical
imaging can address and resolve the problem of biological interpret-
ability. We believe that an efficient and generalized artificial
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A. Base Information

LVI Positive
Age: 64 years
Sex: Male
CT tumor size: 15 mm
Density: Pure-solid
Clinical stage: cIA2
Pathologic stage: pIA2
Histology: Papillary predominant
VPI: Negative
Surgery: Pulmonary lobectomy
Clinical outcome: Bone metastasis
DFS: 73.2 months
Follow-up time: 76.8 months

LVI Negative
Age: 59 years
Sex: Female
CT tumor size: 18 mm
Density: Pure-solid
Clinical stage: cIA2
Pathologic stage: pIA2
Histology: Papillary predominant
VPI: Negative
Surgery: Pulmonary lobectomy
No recurrence or metastasis
DEFS: 109 months
Follow-up time: 109 months

B. Raw Intensity

C. Heatmap

Fig. 5. Gradient-weighted class activation heatmaps. Clinicopathological information (A), CT images (B), and heatmaps (C) of two typical LVI-positive and LVI-
negative cases. Although, apart from LVI status, the clinicopathological information was similar, LVI-positive patients with bone metastasis had significantly
shorter DFS than LVI-negative patients without recurrence or metastasis. The heatmaps indicate that the areas most associated with LVI prediction were the tumor-

parenchyma and tumor-pleura interfaces.

Table 4
Univariate Cox Regression Analyses of Disease-Free Survival in the Training Set
Comprising 591 Patients with Clinical Stage IA Lung Adenocarcinoma

Variable Univariate analysis

HR (95 %CI) p value
Age 1.017(1.000,1.034) 0.044
Sex (female) 0.801(0.588,1.090) 0.158
Smoking history (ever smoker) 1.245(0.905,1.714) 0.178
Family history of lung cancer 0.818(0.530,1.261) 0.363
Density (Pure-solid) 2.096(1.283,3.423) 0.003
CTR 21.88(4.824,99.25) <0.001
Clinical T stage <0.001
cT1b 3.839(1.664,8.857) 0.002
cTlc 6.545(2.862,14.97) <0.001
Lymph node metastasis 2.916(2.072,4.103) <0.001
VPI 1.618(1.181,2.216) 0.003
Pathologic LVI 1.949(1.375,2.763) <0.001
Clinical-model-predicted LVI 1.225(0.876,1.713) 0.236
DL-model-predicted LVI 2.396(1.247,4.603) 0.009
Combined-model-predicted LVI 2.439(1.860,4.704) 0.006

Note. — CI = confidence interval, DL = deep learning, HR = hazard ratio, LVI =
lymphovascular invasion, VPI = visceral pleural invasion.

intelligence system for disease diagnosis and treatment, integrating new
technologies and theories, will result in the accurate diagnosis and
evaluation of diseases.

The study has several limitations. First, the study was retrospective
which may have led to possible selection bias. It is possible that the
positive rate of LVI positivity among the participants may not reflect the
true situation. The inclusion and exclusion criteria were applied strictly
to ensure the definite inclusion of LVI in the study. Future prospective
studies should be conducted to further validate the model. Second, the
combined model was not found to be superior to either the clinical or DL
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models. This may be because the combined model faces the problem of
multi-modal data fusion. Therefore, the combined model did not show
superiority over the clinical and imaging data of a single modality.
Future studies should address the issue of multimodal data fusion with
further model adjustments. Third, the study used CT images acquired
from different machines, with different manufacturers, and using
different protocols. Standardization of the imaging data, as far as
possible, would allow greater generalization of the model. However,
data standardization is a difficult problem that will require future so-
lution. Nonetheless, we consider that this heterogeneity in CT images is
an accurate reflection of real-world clinical data, and thus a trained DL
system based on such data would be more applicable to real-world
clinical practice. Fourth, the data used for survival analysis were
derived from a relatively small number of cases as the follow-up time
was limited to five years. Further verification is required from large-
sample studies in the future.

Conclusion

In conclusion, this DL algorithm using 3D-ResNet-9 based on CT
images offers convenient and potentially useful assistance for the pre-
operative prediction of LVI in patients with clinical stage IA lung
adenocarcinoma. The integrated model combining multimodal imaging
data with clinical and radiological data may thus be useful for the pre-
operative prediction of LVI. This model may also assist with preopera-
tive clinical decision-making.
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Table 5
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Multivariate Cox Regression Analyses of Disease-Free Survival in Patients with Clinical Stage IA Lung Adenocarcinoma

Pathologic LVI

Clinical-model-predicted LVI

DL-model-predicted LVI Combined-model-predicted LVI

Variable HR (95 %CI) p value HR (95 %CI)

Age 1.015(0.998,1.032) 0.078 1.014(0.997,1.031)
Density (Pure-solid) 1.427(0.857,2.376) 0.171 1.470(0.880,2.457)
CTR 4.865(0.892,26.53) 0.068 5.308(0.970,29.04)
Clinical T stage 0.006

cT1b 2.270(0.938,5.493) 0.069 2.328(0.963,5.632)
cTlc 3.359(1.369,8.240) 0.008 3.677(1.502,9.000)
LVI 1.454(1.014,2.083) 0.042 0.972(0.685,1.381)

p value HR (95 %CI) p value HR (95 %CI) p value
0.097 1.014(0.997,1.031) 0.098 1.014(0.998,1.031) 0.095
0.141 1.463(0.881,2.430) 0.142 1.526(0.902,2.582) 0.115
0.054 5.265(0.961,28.86) 0.056 5.236(0.957,28.65) 0.056
0.002 0.003 0.001
0.061 2.304(0.953,5.571) 0.064 2.350(0.971,5.684) 0.058
0.004 3.580(1.450,8.841) 0.006 3.772(1.538,9.248) 0.004
0.875 4.081(1.353,8.115) 0.019 4.837(1.476,8.472) 0.038

Note. — CI = confidence interval, DL = deep learning, HR = hazard ratio, LVI = lymphovascular invasion
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cular invasion.
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