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A B S T R A C T   

Purpose: The presence of lymphovascular invasion (LVI) influences the management and outcomes of patients 
with clinical stage IA lung adenocarcinoma. The objective was the development of a deep learning (DL) signature 
for the prediction of LVI and stratification of prognosis. 
Methods: A total of 2077 patients from three centers were retrospectively enrolled and divided into a training set 
(n = 1515), an internal validation set (n = 381), and an external set (n = 181). A -three-dimensional residual 
neural network was used to extract the DL signature and three models, namely, the clinical, DL, and combined 
models, were developed. Diagnostic efficiency was assessed by ROC curves and AUC values. Kaplan-Meier curves 
and Cox proportional hazards regression analyses were conducted to evaluate links between various factors and 
disease-free survival. 
Results: The DL model could effectively predict LVI, shown by AUC values of 0.72 (95 %CI: 0.68–0.76) and 0.63 
(0.54–0.73) in the internal and external validation sets, respectively. The incorporation of DL signature and 
clinical-radiological factors increased the AUC to 0.74 (0.71–0.78) and 0.77 (0.70–0.84) in comparison with the 
DL and clinical models (AUC of 0.71 [0.68–0.75], 0.71 [0.61–0.81]) in the internal and external validation sets, 
respectively. Pathologic LVI, LVI predicted by both DL and combined models were associated with unfavorable 
prognosis (all p < 0.05). 
Conclusion: The effectiveness of the DL signature in the diagnosis of LVI and prognosis prediction in patients with 
clinical stage IA lung adenocarcinoma was demonstrated. These findings suggest the potential of the model in 
clinical decision-making.    
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ResNet residual neural network 
ROC receiver operating characteristic 
RUL right upper lobe 
VPI visceral pleural invasion. 

Introduction 

Lung cancer is a deadly malignancy with high global mortality. Lung 
adenocarcinoma is the most prevalent histological subtype of non-small 
cell lung cancers (NSCLCs) [1]. The proportion of clinical stage IA lung 
cancer has increased by 58 % over the past decade [2]. They are usually 
treated with lobectomy together with dissection of the mediastinal 
lymph nodes [3]. Screening using low-dose computed tomography 
(LDCT), the) has improved the diagnosis of early-stage disease, and thus 
the sublobar resection may be a reasonable alternative to lobectomy for 
stage IA NSCLC patients. Several studies have shown that in properly 
selected patients, lobectomy and sublobar resection lead to comparable 
survival outcomes [4,5]. However, it has been reported that clinical 
stage IA patients may have recurrence and metastasis approaching 35 % 
[6]. Inappropriate sublobar resections may lead to undesirable surgical 
outcomes, even in patients with high-risk features. In addition, in terms 
of the improved survival rate of patients with NSCLC, recent clinical 
studies have shown that immunotherapy, either as a neoadjuvant or 
adjuvant therapy, is more effective than chemoradiotherapy alone for 
early-stage patients [7–10]. Since immunotherapy has made great 
progress, neoadjuvant and adjuvant therapy plays an important role in 
improving the survival rate of lung cancer. Thus, whether it is to guide 
the choice of surgical scope or adjuvant treatment in the clinical stage IA 
lung adenocarcinoma, the investigation of factors predicting metastasis 
and recurrence following resection is urgently needed for the stratifi
cation and management of these patients. 

Lymphovascular invasion (LVI) represents the invasion of malignant 
cells into arteries, veins, and lymph vessels and is known to be predictive 
of disease recurrence [11–13]. Neoadjuvant chemotherapy is usually 
recommended for the preoperative treatment of LVI-positive NSCLC, as 
it can reduce tumor staging and increase the likelihood of better out
comes [14,15]. It has also been found that lobectomy together with 
more extensive lymph node dissection results in better outcomes 
compared with sub-lobectomy in patients with LVI [16]. Thus, the ac
curate detection of LVI would assist in determining patients likely to 
benefit from individualized clinical decision-making. While previous 
studies have indicated that tumor size or the consolidation tumor ratio 
(CTR) may serve as indicators for assessing LVI, the tumor size cutoff 
(4.5 cm) is not suitable for clinical stage IA lung cancer [17], and the 
CTR is dubious (0.25 or 0.5) for those tumor size ≤ 3 cm [18]. Therefore, 
there has been limited investigation of the use of imaging for the pre
diction of LVI in lung cancer. 

The development of deep learning (DL) has altered the landscape of 
imaging investigations, shifting from human interpretation to self- 
taught machine analysis [19]. DL is effective in many fields, including 
the detection and malignancy prediction of lung nodules on CT imaging 
[20,21]. However, there is limited information on its use for predicting 
LVI in lung cancer. Here, we investigated the construction of a DL model 
for the prediction of clinical stage IA lung adenocarcinoma from CT 
images to develop an effective, simpler, and machine-based means of 
identifying patients who would benefit from clinical intervention. 

Materials and methods 

The ethical review board of Sun Yat-sen University Cancer Center 
and the First Affiliated Hospital of Guangzhou Medical University 
(B2022-293-01), the Fifth Affiliated Hospital of Sun Yat-sen University 
(K107-1) approved this study, and waived the requirement for written 
informed consent. 

Patients 

The patients included in the study were selected from three hospitals 
in China, specifically, center 1 (Sun Yat-sen University Cancer Center) 
between 2010 and 2021, center 2 (The First Affiliated Hospital of 
Guangzhou Medical University) between 2015 and 2019, and center 3 
(The Fifth Affiliated Hospital of Sun Yat-sen University) between 2016 
and 2018. The inclusion and exclusion criteria are presented in Fig. 1. 
The final number of patients enrolled was 2077, including 1070, 826 
and 181 patients from three centers, respectively. The participants from 
centers 1 and 2 were assigned to the training (n = 1515) and internal 
validation (n = 381) cohorts (ratio 8: 2) using simple randomization. 
The cohort of 181 patients from center 3 was used as the external vali
dation set. A previous report has described 603 patients from center 1 
[22], focusing on the preoperative prediction of malignancy in solitary 
lung nodules using a DL model. 

Clinical and pathological data 

The clinical and pathological features of the participants were ob
tained, including age, sex, symptoms, smoking history (smoker or non- 
smoker), and family history of cancer. Tumor staging was defined ac
cording to TNM from the 8th edition of the American Joint Committee of 
Cancer (AJCC) [23] and histopathological classifications were according 
to the International Association for the Study of Lung Cancer/American 
Thoracic Society/ European Respiratory Society classification system 
[24]. Data on LVI, visceral pleural invasion (VPI), lymph node metas
tasis, and distant metastasis status were acquired from pathological re
ports. LVI was defined as the presence of tumor cells in lymphatic, 
arterial or venous vessels in the surrounding pulmonary tissue that was 
visible on microscopy. VPI was classified based on the hematox
ylin-eosin–stained slice: PL0 (lack of pleural invasion beyond the elastic 
layer), PL1 (invasion beyond the elastic layer), PL2 (invasion into the 
surface of the visceral pleura), and PL3 (parietal pleura involvement). 
When hematoxylin-eosin staining indicated that the lesion was adjacent 
to the pleura, and it was uncertain whether the visceral pleura was 
involved, an elastic stain can be used to determine whether VPI was 
present. The elastic stain was not used at our institution to reassess VPI 
during the study inclusion period. PL1 and PL2 could not be recorded 
separately in this study. 

CT image acquisition 

CT scans were conducted from the apex to the base of the lung. 
Supplementary Table E1 shows the details of the scanning and recon
struction parameters. 

Evaluation of radiological features 

The radiological features were evaluated by three radiologists with 
5, 10, and 15 years of experience, respectively, in thoracic imaging and 
diagnosis. They were blinded to the diagnosis and data of the patients, 
and interpretation was done by consensus. The specific characteristics 
evaluated were the maximum diameter of the tumor, the consolidation 
maximum diameter, CTR, the tumor location (right upper, middle, or 
lower lung, or left upper, middle, or lower lung), the tumor density 
(pure-solid or subsolid), shape (regular or irregular), boundary (clear or 
vague), presence or absence of lobulation (defined as irregular un
dulations in the margin of the nodule), spiculation (the extension of 
strands, 2 mm or greater, from the tumor margin to the surrounding 
parenchyma but not into the pleura), vacuole sign (air attenuation, 
either ovoid or round, < 5 mm within the tumor), cavity (air attenua
tion, either ovoid or round, ≥ 5 mm within the tumor), air bronchogram 
(presence of air-filled bronchi within the tumor), vessel convergence 
(convergence of multiple blood vessels directed to the tumor), and 
pleural indentation (presence of linear or triangular strands from the 
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tumor to the pleura). CT images were viewed in lung windows (level, 
–600 Hounsfield units [HU]; width, 1500 HU). 

Data splitting and pretreatment 

Learning and selection of the model were conducted in the training 
cohort while model performance was evaluated in the internal and 
external validation cohorts. Five-fold stratified cross-validation was 
used for both cohorts; details are shown in the first part of Fig. 2. For 
developing the DL system, the CT data samples were preprocessed. The 
details about the CT image preprocessing are shown in the Appendix E1 
(Supplemental Material). 

3D-ResNet-9 model architecture 

The Residual Neural Network algorithm was used to classify the 
images into nine layers (3D-ResNet-9), allowing the extraction of spe
cific features for prediction [25]. The 3D-ResNet-9 model is one of the 
methods used for a residual neural network that functions in a similar 
manner to other residual neural networks but differs in the number of 
layers. The main structure of 3D-ResNet-9 consisted of the following 
parts: 

(a) Initial convolution layer: The 3D-ResNet-9 structure began with a 
3 × 3 convolution layer with step size 1, followed by a maximum 
pool (maxpool) layer. This part of the model was responsible for the 
extraction of preliminary features. 
(b) Residual blocks: Four residual blocks formed the main compo
nents of the 3D-ResNet-9. Each residual block contained two 3D 

convolutional layers that operated by batch normalization (BN) and 
ReLU activation. BN refers to the normalization of batch data, in 
which a feature map of a data batch function with a distribution rule 
has an average value of 0 and variance of 1. To reduce resource 
consumption and training time, the number of channels was reduced 
to 16, 32, 64, and 96, respectively. The input was then connected 
directly to the output of these convolutional layers via a skip join 
(also called an identity join). This design allowed the network to 
learn the residual mapping between input and output, thus avoiding 
the problem of disappearing or exploding gradients. 
(c) Average global pool (avgpool) layer: Following the residual 
blocks, 3D-ResNet-9 used an avgpool layer in place of the fully 
connected layer. This significantly reduced the number of parame
ters required by the model, thus avoiding overfitting. A full 
connection layer was used after the avgpool layer for the output of 
the results of the final classification. 

The second part of Fig. 2 illustrates the 3D-ResNet-9 architecture. 
The images were processed into various layers allowing the extraction of 
features for prediction. A significant advantage of the 3D-ResNet-9 al
gorithm is that it avoids the problem of vanishing gradients, rendering it 
more efficient in comparison with other algorithms. 

Model construction and validation 

LVI status was used as the predicted outcome, and a binary classifi
cation model based on DL was designed, namely, the fully connected 
neural network [26]. The classifier used a one-dimensional array as 
input, with the output being a binary score, which was distinguished 

Fig. 1. Flowchart of patient selection. LVI = lymphovascular invasion.  
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according to the appropriate threshold value. The category was defined 
as 1 when the score was greater than the threshold value and if not, the 
category was described as 0. The third part of Fig. 2 shows the complete 
architecture of the fully connected neural network. An Adam optimizer 
was used for training. The learning rate was 0.0005, and the batch size 
was set to 16. The loss function adopted a weighted L1 norm, and the 
weight was set according to the positive proportion. Tne model was then 
constructed to reflect the improvement in classification by the integra
tion of multidimensional features. The model reached convergence 
within an average of five training cycles. The model was then validated 
in both the internal and external validation sets. To improve classifica
tion performance via the integration of multidimensional features, a 
clinical model, a DL model, and a combined model were established. Ten 
features were found to be correlated with LVI status in the univariate 
regression analyses (Table 2) and placed into model for automatic 
analysis. The DL model was established using 768 high-quality DL fea
tures extracted from 3D-ResNet-9. The combined model was constructed 
by the insertion of the clinical and radiological factors into the DL model 
through the fully connected neural network which was designed as a 
single hidden layer, with the neuron number in the layer set to 1024. The 
neuron number in the input layer was set according to the number of 
input features while the number in the output layer was set to 1, 
indicative of positive output probability. The third part of Fig. 2 shows 
the model construction. 

Gradient-weighted class activation mapping (Grad-CAM) was used to 
determine the region of the CT image that contributed most to predic
tion [27] and the results were visualized in heatmaps. The Grad-CAM 
details are shown in the Appendix E2 (Supplemental Material). 

Follow-up and survival 

Following surgery, the patients were evaluated by CT every six 
months for the initial two years and every 12 months thereafter. Overall, 
591 patients were followed up for a minimum of five years. The study 
endpoint was defined as disease-free survival (DFS), defined as the in
terval between the surgery and recurrence, metastasis, death, or final 

follow-up. Significant variables from the univariate analysis were then 
incorporated into the multivariate analysis for the determination of in
dependent DFS predictors. Kaplan-Meier curves were plotted and dif
ferences between the high- and low-risk groups were examined by log- 
rank tests. 

Statistical analysis 

Data were analyzed using Python version 3.7.0, PyTorch version 
1.6.0, CUDA version 9.2, and R version 3.5.3. Clinicopathological and 
radiological characteristics are expressed as means ± standard de
viations for continuous variables and numbers (percentages) for cate
gorical variables. Inter-group comparisons were evaluated by unpaired 
t-tests, chi-squared tests, or Mann-Whitney U tests. Inter-observer 
agreement (readers 1, 2, and 3) was evaluated by Cohen’s kappa test 
and intraclass correlation coefficients. Receiver operating characteristic 
(ROC) curves, the areas under the curves (AUCs) and the DeLong test 
were used to compare the predictive performance of the models. The 
evaluation matrix included accuracy, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and F1 scores. 
Calibration curves and box plots were used to determine the degree of fit 
of the models. Survival differences were analyzed by Kaplan-Meier 
curves and log-rank tests. All significance levels were two-tailed with 
p < 0.05 considered statistically significant. 

Results 

Patient characteristics 

Details of the participants, including clinical, radiological, and 
pathological features, are provided in Table 1. There was good agree
ment between the three chest radiologists in the evaluation of the 
radiological characteristics (p < 0.05) (Supplementary Tables E2 and 
E3). No significant differences were observed in the patient character
istics between the training and internal validation cohorts (p > 0.05). It 
was found that LVI-positive and -negative participants in three cohorts 

Fig. 2. Flowchart of the study design. BN = batch normalization, LVI = lymphovascular invasion, ResNet = residual neural network.  
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Table 1 
Clinical, Pathological, and Radiological Characteristics   

Training Set 
(n = 1515) 

p1 Value Internal validation Set 
(n = 381) 

p1 Value Internal validation Set 
(n = 181) 

p1 Value p2 
Value 

LVI Positive 
(n = 232) 

LVI Negative 
(n = 1283)  

LVI 
Positive 
(n = 57) 

LVI 
Negative 
(n = 324)  

LVI 
Positive 
(n = 10) 

LVI 
Negative 
(n = 171)  

A. Clinical characteristics           
Age* 58.8±10.6 58.4±9.79 0.660 60.5±11.2 57.6±9.86 0.072 57.8±10.2 59.2±10.4 0.690 0.452 
Sex   0.149   0.417   0.927 0.562 
Male 119 (51.3 

%) 
589 (45.9 %)  31 (54.4 

%) 
154 (47.5 
%)  

4 (40.0 %) 80 (46.8 %)   

Female 113 (48.7 
%) 

694 (54.1 %)  26 (45.6 
%) 

170 (52.5 
%)  

6 (60.0 %) 91 (53.2 %)   

Symptom   0.145   0.856   0.823 0.333 
Yes 134 (57.8 

%) 
809 (63.1 %)  36 (63.2 

%) 
212 (65.4 
%)  

2 (20.0 %) 21 (12.3 %)   

No 98 (42.2 %) 474 (36.9 %)  21 (36.8 
%) 

112 (34.6 
%)  

8 (80.0 %) 150 (87.7 
%)   

Smoking history   0.277   0.985   0.113 0.714 
Ever smoker 68 (29.3 %) 329 (25.6 %)  15 (26.3 

%) 
89 (27.5 %)  0 (0 %) 48 (28.1 %)   

Never smoker 164 (70.7 
%) 

954 (74.4 %)  42 (73.7 
%) 

235 (72.5 
%)  

10 (100 %) 123 (71.9 
%)   

Family history of cancer   0.242   0.170   0.997 0.965 
Yes 25 (10.8 %) 178 (13.9 %)  4 (7.0 %) 48 (14.8 %)  1 (10.0 %) 8 (4.7 %)   
No 207 (89.2 

%) 
1105 (86.1 
%)  

53 (93.0 
%) 

276 (85.2 
%)  

9 (90.0 %) 163 (95.3 
%)   

Clinical T stage   <0.001   <0.001   0.005 0.999 
cT1a 5 (2.2 %) 362 (28.2 %)  2 (3.5 %) 90 (27.8 %)  1 (10.0 %) 56 (32.7 %)   
cT1b 97 (41.8 %) 593 (46.2 %)  20 (35.1 

%) 
154 (47.5 
%)  

2 (20.0 %) 75 (43.9 %)   

cT1c 130 (56.0 
%) 

328 (25.6 %)  35 (61.4 
%) 

80 (24.7 %)  7 (70.0 %) 40 (23.4 %)   

B. Pathological characteristics           
Histologic subtype   <0.001   <0.001   0.533 0.563 
Lepidic predominant 5 (2.2 %) 163 (12.7 %)  0 (0 %) 48 (14.8 %)  0 (0 %) 6 (3.5 %)   
Acinar predominant 134 (57.8 

%) 
777 (60.6 %)  32 (56.1 

%) 
180 (55.6 
%)  

4 (40.0 %) 84 (49.1 %)   

Papillary predominant 39 (16.8 %) 160 (12.5 %)  7 (12.3 %) 45 (13.9 %)  4 (40.0 %) 47 (27.5 %)   
Micropapillary predominant 15 (6.5 %) 20 (1.6 %)  4 (7.0 %) 12 (3.7 %)  0 (0 %) 3 (1.8 %)   
Solid predominant 23 (9.9 %) 61 (4.8 %)  10 (17.5 

%) 
13 (4.0 %)  1 (10.0 %) 10 (5.8 %)   

Mucous predominant 7 (3.0 %) 37 (2.9 %)  2 (3.5 %) 13 (4.0 %)  0 (0 %) 5 (2.9 %)   
Special type 1 (0.4 %) 5 (0.4 %)  0 (0 %) 1 (0.3 %)  1 (10.0 %) 2 (1.2 %)   
MIA 0 (0 %) 10 (0.8 %)  0 (0 %) 2 (0.6 %)  0 (0 %) 1 (0.6 %)   
AIS 0 (0 %) 1 (0.1 %)  0 (0 %) 0 (0 %)  0 (0 %) 0 (0 %)   
Non-classified 8 (3.4 %) 49 (3.8 %)  2 (3.5 %) 10 (3.1 %)  0 (0 %) 13 (7.6 %)   
Pathologic stage   <0.001   <0.001   <0.001 0.838 
IA 93 (40.1 %) 1032 (80.4 

%)  
23 (40.4 
%) 

263 (81.2 
%)  

6 (60.0 %) 139 (81.3 
%)   

IB 50 (21.6 %) 164 (12.8 %)  14 (24.6 
%) 

43 (13.3 %)  1 (10.0 %) 16 (9.4 %)   

IIB 32 (13.8 %) 38 (3.0 %)  9 (15.8 %) 8 (2.5 %)  0 (0 %) 5 (2.9 %)   
IIIA 56 (24.1 %) 45 (3.5 %)  11 (19.3 

%) 
10 (3.1 %)  2 (20.0 %) 6 (3.5 %)   

IIIB 0 (0 %) 1 (0.1 %)  0 (0 %) 0 (0 %)  1 (10.0 %) 0 (0 %)   
IVA 1 (0.4 %) 3 (0.2 %)  0 (0 %) 0 (0 %)  0 (0 %) 5 (2.9 %)   
VPI   <0.001   <0.001   0.823 0.949 
Yes 91 (39.2 %) 196 (15.3 %)  21 (36.8 

%) 
50 (15.4 %)  2 (20.0 %) 21 (12.3 %)   

No 141 (60.8 
%) 

1087 (84.7 
%)  

36 (63.2 
%) 

274 (84.6 
%)  

8 (80.0 %) 150 (87.7 
%)   

Lymph node metastasis   <0.001   <0.001   0.036 0.477 
Yes 89 (38.4 %) 84 (6.5 %)  20 (35.1 

%) 
18 (5.6 %)  3 (30.0 %) 11 (6.4 %)   

No 143 (61.6 
%) 

1199 (93.5 
%)  

37 (64.9 
%) 

306 (94.4 
%)  

7 (70.0 %) 160 (93.6 
%)   

Distant metastasis   1.000   0.325   1.000 1.000 
Yes 1 (0.4 %) 3 (0.2 %)  1 (1.8 %) 0 (0 %)  0 (0 %) 5 (2.9 %)   
No 231 (99.6 

%) 
1280 (99.8 
%)  

56 (98.2 
%) 

324 (100 %)  10 (100 %) 166 (97.1 
%)   

C. Radiological characteristics           
Whole maximum diameter* 21.5±5.22 18.6±5.87 <0.001 21.3±4.72 18.4±5.89 <0.001 23.3±7.48 19.9±7.49 0.194 0.492 
Consolidation maximum 

diameter* 
20.9±5.51 15.4±7.06 <0.001 20.9±5.49 15.4±6.96 <0.001 22.2±6.08 14.9±7.67 0.004 0.921 

CTR* 0.97±0.11 0.82±0.25 <0.001 0.98±0.12 0.83±0.25 <0.001 0.97±0.10 0.77±0.30 <0.001 0.608 

(continued on next page) 

K. Liu et al.                                                                                                                                                                                                                                      



Translational Oncology 42 (2024) 101894

6

differed significantly in terms of clinical T stage, pathological stage, 
lymph node metastasis, consolidation maximum diameter of the tumor, 
and CTR (p < 0.05). After the univariate analysis, multivariate analysis 
found that the presence of CTR was the independent predictor of LVI 
status (p < 0.05). Table 2 lists the results of the univariate and multi
variate analyses for training cohort. 

Model efficiency evaluation 

As shown in Table 3, the combined model had AUCs of 0.76 (95 % 
confidence interval [CI]: 0.74–0.77), 0.74 (95 %CI: 0.71–0.78), and 0.77 
(95 %CI: 0.70–0.84) for the training, internal, and external validation 
sets, respectively, which were greater than those for the clinical (0.74 
[95 %CI: 0.73–0.76], 0.71 [95 %CI: 0.68–0.75], and 0.71 [95 %CI: 
0.61–0.81], respectively) and DL models (0.76 [95 %CI: 0.75–0.78], 
0.72 [95 %CI: 0.68–0.76], and 0.63 [95 %CI: 0.54–0.73], respectively). 

Table 1 (continued )  

Training Set 
(n = 1515) 

p1 Value Internal validation Set 
(n = 381) 

p1 Value Internal validation Set 
(n = 181) 

p1 Value p2 
Value 

LVI Positive 
(n = 232) 

LVI Negative 
(n = 1283)  

LVI 
Positive 
(n = 57) 

LVI 
Negative 
(n = 324)  

LVI 
Positive 
(n = 10) 

LVI 
Negative 
(n = 171)  

Location   0.277   0.635   0.382 0.258 
RUL 76 (32.8 %) 444 (34.6 %)  14 (24.6 

%) 
108 (33.3 
%)  

6 (60.0 %) 67 (39.2 %)   

RML 18 (7.8 %) 98 (7.6 %)  5 (8.8 %) 29 (9.0 %)  0 (0 %) 13 (7.6 %)   
RLL 41 (17.7 %) 240 (18.7 %)  15 (26.3 

%) 
73 (22.5 %)  0 (0 %) 28 (16.4 %)   

LUL 69 (29.7 %) 301 (23.5 %)  16 (28.1 
%) 

69 (21.3 %)  2 (20.0 %) 44 (25.7 %)   

LLL 28 (12.1 %) 200 (15.6 %)  7 (12.3 %) 45 (13.9 %)  2 (20.0 %) 19 (11.1 %)   
Density   <0.001   <0.001   0.196 0.392 
Subsolid 25 (10.8 %) 514 (40.1 %)  3 (5.3 %) 123 (38.0 

%)  
8 (80.0 %) 92 (53.8 %)   

Pure-solid 207 (89.2 
%) 

769 (59.9 %)  54 (94.7 
%) 

201 (62.0 
%)  

2 (20.0 %) 79 (46.2 %)   

Shape   0.342   0.287   0.806 0.933 
Regular 4 (1.7 %) 40 (3.1 %)  0 (0 %) 12 (3.7 %)  3 (30.0 %) 67 (39.2 %)   
Irregular 228 (98.3 

%) 
1243 (96.9 
%)  

57 (100 %) 312 (96.3 
%)  

7 (70.0 %) 104 (60.8 
%)   

Boundary   0.208   0.100   0.418 0.570 
Clear 48 (20.7 %) 318 (24.8 %)  23 (40.4 

%) 
75 (23.1 %)  2 (20.0 %) 65 (38.0 %)   

Vague 184 (79.3 
%) 

965 (75.2 %)  34 (59.6 
%) 

249 (76.9 
%)  

8 (80.0 %) 106 (62.0 
%)   

Vacuole sign   0.775   0.977   1.000 0.608 
Yes 44 (19.0 %) 230 (17.9 %)  9 (15.8 %) 55 (17.0 %)  2 (20.0 %) 30 (17.5 %)   
No 188 (81.0 

%) 
1053 (82.1 
%)  

48 (84.2 
%) 

269 (83.0 
%)  

8 (80.0 %) 141 (82.5 
%)   

Cavity   0.369   0.160   1.000 0.307 
Yes 9 (3.9 %) 33 (2.6 %)  6 (10.5 %) 9 (2.8 %)  0 (0 %) 2 (1.2 %)   
No 223 (96.1 

%) 
1250 (97.4 
%)  

51 (89.5 
%) 

315 (97.2 
%)  

10 (100 %) 169 (98.8 
%)   

Spiculated sign   <0.001   <0.001   0.093 0.455 
Yes 185 (79.7 

%) 
791 (61.7 %)  41 (71.9 

%) 
196 (60.5 
%)  

8 (80.0 %) 81 (47.4 %)   

No 47 (20.3 %) 492 (38.3 %)  16 (28.1 
%) 

128 (39.5 
%)  

2 (20.0 %) 90 (52.6 %)   

Lobulated sign   <0.001   <0.001   0.120 0.738 
Yes 226 (97.4 

%) 
1098 (85.6 
%)  

54 (94.7 
%) 

282 (87.0 
%)  

10 (100 %) 124 (72.5 
%)   

No 6 (2.6 %) 185 (14.4 %)  3 (5.3 %) 42 (13.0 %)  0 (0 %) 47 (27.5 %)   
Air bronchogram   0.102   0.044   1.000 0.413 
Yes 40 (17.2 %) 286 (22.3 %)  7 (12.3 %) 83 (25.6 %)  4 (40.0 %) 75 (43.9 %)   
No 192 (82.8 

%) 
997 (77.7 %)  50 (87.7 

%) 
241 (74.4 
%)  

6 (60.0 %) 96 (56.1 %)   

Vessel convergence   <0.001   <0.001   0.082 0.649 
Yes 219 (94.4 

%) 
1004 (78.3 
%)  

56 (98.2 
%) 

247 (76.2 
%)  

6 (60.0 %) 49 (28.7 %)   

No 13 (5.6 %) 279 (21.7 %)  1 (1.8 %) 77 (23.8 %)  4 (40.0 %) 122 (71.3 
%)   

Pleural indentation   <0.001   <0.001   0.951 0.668 
Yes 193 (83.2 

%) 
892 (69.5 %)  46 (80.7 

%) 
222 (68.5 
%)  

3 (30.0 %) 62 (36.3 %)   

No 39 (16.8 %) 391 (30.5 %)  11 (19.3 
%) 

102 (31.5 
%)  

7 (70.0 %) 109 (63.7 
%)   

Note. — Unless otherwise noted, values are numbers of patients, with percentages in parentheses. AIS = adenocarcinoma in situ, CTR = consolidation tumor ratio, LLL 
= left lower lobe, LUL = left upper lobe, LVI = lymphovascular invasion, MIA = minimally invasive adenocarcinoma, RLL = right lower lobe, RML = right middle lobe, 
RUL = right upper lobe, VPI = visceral pleural invasion. 

* Data are means ± standard deviations. The P1 value was derived from the univariate association analyses between LVI positive and LVI negative. P2 value was 
derived from univariate association analyses between the training and internal validation sets. 
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Fig. 3 illustrates the ROC curves of the three models for three sets for LVI 
prediction. However, irrespective of the cohort, DeLong’s test indicated 
that the models had relatively similar AUCs (p > 0.05) (Supplementary 
Table E4). Fig. 4 shows that the output from all three models was 
significantly associated with LVI (all p < 0.05), supporting the reliability 

of the results in predicting LVI. We then comprehensively evaluated the 
accuracy, sensitivity, specificity, PPV, NPV, and F1 scores of the three 
models. The details are shown in Table 3. These results indicate that DL 
features and clinical characteristics complement each other. The cali
bration curves are provided in supplementary Figure E1. 

Fig. 5 presents the clinicopathological information (A), CT images 
(B), and heatmaps (C) of both LVI-positive and -negative patients with 
comparable pathological staging. However, LVI-positive patients with 
bone metastases had significantly shorter DFS than LVI-negative pa
tients without recurrence or metastasis. The heatmaps indicated differ
ences between tumors with LVI-positivity and LVI-negativity. The areas 
that were most associated with LVI prediction were the interface be
tween the tumor and its adjacent parenchyma, and the tumor region 
contacting the adjacent pleura. The DL features extracted from the im
ages were thus helpful in identifying the LVI status, assisting further in 
the risk stratification of the patients. 

Survival prediction 

In total, 591 participants were assessed in the survival comparisons. 
The median DFS duration of the participants was 66.6 months, with 163 
of 591 (27.6 %) patients showing poor outcomes after surgery. Partici
pants were followed up for a median of 68.7 months. The univariate 
analysis indicated that DFS was associated with age, density, CTR, 
clinical T stage, lymph node metastasis, VPI, pathologic LVI, and LVI 
predicted by both the DL and combined models. After multivariate 
analysis, age, CTR, clinical T1c stage, pathologic LVI, LVI predicted by 
both DL model and combined model were independent predictors of 
DFS. The results of both univariate and multivariate analyses of three 
cohorts are provided in Tables 4 and 5 while the survival curves are 
illustrated in Fig. 6. The Kaplan–Meier analysis found that the patho
logical LVI status, LVI predicted by the DL model, and the combined 
model output and were effective predictors of patient mortality (p <
0.05 for all). However, LVI predicted by the clinical model could not be 
used as a predictor of DFS. 

The median DFS of patients with and without pathological LVI was 
77.4 and 99.1 months, respectively (p < 0.001) (Fig. 6a), with corre
sponding predicted 5-year survival rates of 70.2 % and 81.2 %. Patients 
were additionally assigned to low- and high-risk groups using the clin
ical, DL, and combined models. The median DFS of patients predicted to 
be high- and low-risk using the clinical model was 92.4 and 95.8 months, 
respectively (p = 0.53) (Fig. 6b), with corresponding predicted 5-year 
survival rates of 78.2 % and 80.0 %. As such, LVI status as predicted 
using the clinical model was not independently predictive of survival in 
clinical stage IA lung adenocarcinoma patients. The median DFS of pa
tients predicted to be high- and low-risk using the DL model was 87.7 
and 103.2 months, respectively (p = 0.01) (Fig. 6c), with corresponding 
5-year survival rates of 74.0 % and 84.4 %. The median DFS of patients 
predicted to be high- and low-risk using the combined model, the me
dian DFS was 82.4 and 94.5 months, respectively (p < 0.001) (Fig. 6d), 
with corresponding 5-year survival rates of 75.2 % and 86.7 %. Kaplan- 

Table 2 
Univariate and Multivariate Logistic Regression Analyses of Factors in the 
Training Set  

Factors Univariate logistic 
regression 

Multivariate logistic 
regression 

OR (95 %CI) p-value OR (95 %CI) p- 
value 

Age 1.010 
(0.996–1.024) 

0.176   

Sex 0.843 
(0.637–1.117) 

0.234   

Symptom 0.819 
(0.616–1.090) 

0.169   

Smoking history 1.152 
(0.840–1.564) 

0.373   

Family history of 
cancer 

0.697 
(0.434–1.074) 

0.117   

Clinical T stage     
cT1b 4.459 

(1.970–12.80) 
0.001 1.257 

(0.498–3.865) 
0.656 

cT1c 11.11 
(4.957–31.76) 

<0.001 1.936 
(0.702–6.351) 

0.231 

Whole maximum 
diameter 

1.077 
(1.051–1.104) 

<0.001 1.231 
(0.990–1.570) 

0.074 

Consolidation 
maximum diameter 

1.109 
(1.085–1.134) 

<0.001 8.218 
(0.641–1.029) 

0.100 

Density 6.062 
(3.939–9.798) 

<0.001 2.296 
(0.878–6.483) 

0.101 

CTR 77.72 
(24.92–294.2) 

<0.001 805.6 
(5.024–3.611) 

0.018 

Shape 2.557 
(0.921–10.62) 

0.119   

Boundary 1.065 
(0.767–1.500) 

0.710   

Vacuole sign 1.104 
(0.766–1.563) 

0.585   

Cavity 1.780 
(0.820–3.547) 

0.119   

Calcification 1.118 
(0.171–4.278) 

0.886   

Spiculated sign 2.592 
(1.853–3.697) 

<0.001 1.131 
(0.757–1.712) 

0.552 

Lobulated sign 6.239 
(2.981–16.00) 

<0.001 1.557 
(0.648–4.391) 

0.357 

Air bronchogram 0.664 
(0.452–0.953) 

0.031 0.832 
(0.538–1.265) 

0.399 

Vessel convergence 5.154 
(2.965–9.868) 

<0.001 1.507 
(0.763–3.204) 

0.259 

Pleural indentation 2.265 
(1.580–3.328) 

<0.001 9.667 
(0.633–1.500) 

0.877 

Note. — CI = confidence interval, CTR = consolidation tumor ratio, OR = odds 
ratio. 

Table 3 
Prediction Performance of the Three Models  

Models Dataset AUC (95 % CI) ACC SEN SPE PPV NPV F1 score 

Clinical model Training set 0.74 (0.73–0.76) 0.62 0.79 0.59 0.26 0.94 0.39 
Internal validation set 0.71 (0.68–0.75) 0.63 0.76 0.61 0.28 0.94 0.40 
External validation set 0.71(0.61–0.81) 0.62 0.88 0.60 0.13 0.99 0.22 

DL model Training set 0.76 (0.75–0.78) 0.64 0.79 0.63 0.28 0.94 0.42 
Internal validation set 0.72 (0.68–0.76) 0.63 0.79 0.60 0.27 0.94 0.40 
External validation set 0.63(0.54–0.73) 0.50 0.86 0.48 0.09 0.98 0.16 

Combined model Training set 0.76 (0.74–0.77) 0.63 0.81 0.60 0.27 0.95 0.40 
Internal validation set 0.74 (0.71–0.78) 0.68 0.77 0.60 0.31 0.94 0.43 
External validation set 0.77(0.70–0.84) 0.72 0.84 0.70 0.15 0.98 0.26 

Note. — ACC = accuracy, AUC = area under the receiver operating characteristic curve, CI = confidence interval, DL = deep learning, NPV = negative predictive value, 
PPV = positive predictive value, SEN = sensitivity, SPE = specificity. 

K. Liu et al.                                                                                                                                                                                                                                      



Translational Oncology 42 (2024) 101894

8

Meier analyses indicated that both the combined and DL models were 
capable of readily identifying patients facing a higher risk of mortality. 

Discussion 

Here, the effectiveness of a DL signature derived from 3D-ResNet-9 of 
CT was investigated for predicting the outcomes of patients with clinical 
stage IA lung adenocarcinoma involving LVI. It was found that the 
combined model integrating DL with clinical-radiological characteristics 
achieved the best performance (AUCs = 0.76, 0.74 and 0.77 for the 
training, internal, and external validation sets, respectively). Despite a 
lack of significant advantage of the combined model over the DL and 
clinical models, the DL signature showed comparable predictive efficacy 
with clinical-radiological characteristics. Therefore, even the use of the 
DL model alone provided a simple and more accurate prediction of LVI 
from CT. High-risk status as predicted with the DL model (HR for DFS, 
2.396 [p = 0.009]) or the combined model (HR for DFS, 2.439 [p =
0.006]) and the presence of pathologic LVI (HR for DFS, 1.949 [p 
<0.001]) were all found to be related to poor prognostic outcomes. 
Furthermore, LVI status as predicted by both the DL and combined 
models was independently associated with patient DFS in multivariate 
analyses, i.e., shortened DFS [11–13], which was consistent with our 
findings. 

Primary tumors are connected to lymph nodes through peritumoral 
lymphatic vessels and arteriovenous connections, which facilitate 
metastasis [28,29]. Thus, early-stage lung cancer accompanied by 
LVI-positivity requires consideration in terms of appropriate surgical 
scope [4,5,28,29]. Although the benefits of adjuvant chemotherapy are 
now recognized for stage II or III NSCLC, there is no consensus on its use 
for stage IA [30]. The present study aimed to predict the LVI status 
preoperatively, which may provide evidence of appropriate therapeutic 
regimens. This study appears to be the first investigation to incorporate 
ResNet features with preoperative CT to determine the LVI status. 
Notably, this DL model provides a simpler means of identifying patients 
with a high risk of tumor recurrence even in stage IA disease, thus 
providing information on the biology of the primary tumor and further 
information for accurate prediction of prognosis. Beck et al developed a 
3D convolutional neural network using a transfer learning algorithm to 
predict LVI or nodal involvement (AUCs of 0.63–0.72) [31], which dif
fers from the DL features used in this study that only focused on the LVI 
status. The present results allow the excavation of hidden features that 
are not available to clinical examinations and imaging, thus providing a 
more accurate interpretation of the relationship between CT imaging 
and LVI status. 

Recent studies have shown that the lung parenchyma surrounding 
the primary tumor may be involved in tumor invasion and metastasis 
[32,33]. Zuo et al [34] and Yang et al [35] concentrated on CT intra
tumor features associated with LVI and outcomes. On the basis of the 
previous two studies, Chen et al extracted CT-based radiomics features 
from 145 patients, and found that the gross tumor volume incorporating 

peritumoral regions 9 mm from the tumor can predict LVI in NSCLC 
(AUCs of 0.67–0.82) [36]. However, these findings required further 
verification with large samples. Fig. 4 suggests the possibility that 
additional factors not visible to the naked eye may also affect tumor 
invasiveness at the tumor-parenchyma and tumor-pleura interfaces. This 
investigation used a large sample of patients from two centers, and the 
model was found to be both robust and generalizable. We believe that 
such an approach integrating DL models and available 
clinical-radiological information can be applied to the development of 
similar models in medicine. 

The multivariate analysis demonstrated that preoperative CTR could 
independently predict LVI, as observed by a previous study [37,38]. CTR 
has also been observed to predict prognosis following surgery or radi
ation treatment for NSCLC, as well as having the ability to predict lymph 
node metastasis and VPI. The findings of the long-term JCOG 0201 trial 
indicated that limited surgery could result in satisfactory outcomes in 
patients with predominantly GGO lung tumors with CTR values of 0.5 or 
less and sizes between 2 and 3 cm [39]. Thus, higher CTR values are 
indicative of increased proliferation and invasiveness of the cancer cells, 
together with an increased risk of LVI development. 

There has been intense emphasis on the part played by LVI in NSCLC 
in the TNM staging manual. Several studies have demonstrated that LVI 
adversely impacts survival in NSCLC [40,41]. Here, LVI was observed to 
be an independent risk factor for DFS in univariate regression analysis. 
LVI was then used to stratify the patients and the predictive ability of 
three models for DFS was investigated. The LVI predictions made by DL 
and combined models were also found to be independently associated 
with DFS in multivariate analyses. Also, the Kaplan-Meier analysis found 
that the output of DL and combined models clearly separated the lung 
adenocarcinoma patients into high- and low-risk mortality groups. The 
results of prognostic analysis in this study were consistent with previous 
study [30,32]. However, LVI predicted by the clinical model is not a 
prognostic predictor. This indicates that the DL signature, in comparison 
with clinical and radiological features will assist in the assessment of the 
survival risk in individual patients, as well as providing a reference for 
appropriate treatment. 

In recent years, the application of DL in medical imaging has made 
significant advances in the field of tumor evaluation, including tumor 
diagnosis, clinical grading and staging, genetic analyses, efficacy eval
uation, and prognosis prediction [19-21,42-44]. This study concentrated 
on the prediction of LVI status in clinical stage IA lung adenocarcinoma 
through the deep mining of high-throughput, noninvasive, and 
comprehensive features in CT images, which reflect the spatial hetero
geneity of the lesions and have important prognostic value for disease 
treatment. Currently, the main challenge faced by DL models is that of 
biological interpretability. Traditional manual radiomics features have 
complete formulas and definitions that are closely related to the se
mantic features of lesions described in medical imaging diagnosis. 
Therefore, these can be used as an approximate explanation of the po
tential biological significance of radiomics features. However, DL 

Fig. 3. Predictive performance of the DL signature in the identification of LVI. ROC curves of the three models for the prediction of lymphovascular invasion in the 
training set (a), internal validation set (b), and external validation set (c). AUC = area under the curve, CI = confidence interval, DL = deep learning, ROC = receiver 
operating characteristic. 
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features represent a "black box" [45] as they lack accurate and complete 
formulas and definitions, making them difficult to interpret. A common 
method used is their reverse interpretation using DL features in heat
maps which can provide information on the clinical significance of 
specific regions of the model. The model output of the current study is 
shown in the heatmap in Fig. 5, this presentation solves the problem of 
the biological interpretability of the model to a certain extent. However, 
the heatmap cannot truly meet the requirements of biological 

interpretability due to the large amount of error. In addition, some im
aging features with high predictive ability may be association with 
increased expression of specific genes or proteins. The biological inter
pretability of DL models could thus be further improved by exploring the 
relationships between these genes, proteins and clinical endpoint events 
[46]. In the future, more research on the application of DL in medical 
imaging can address and resolve the problem of biological interpret
ability. We believe that an efficient and generalized artificial 

Fig. 4. Difference in the DL signature between Clinical Stage IA lung adenocarcinoma patients with LVI and without LVI. Boxplots showing the lymphovascular 
invasion outputs of the clinical model (a, d, g), DL model (b, e, h), and combined model (c, f, i) in the training set (a–c), internal validation set (d–f), and external 
validation set (g–i). The outputs of all three models were significantly associated with lymphovascular invasion (all p < 0.05). DL = deep learning, LVI = lym
phovascular invasion. 
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intelligence system for disease diagnosis and treatment, integrating new 
technologies and theories, will result in the accurate diagnosis and 
evaluation of diseases. 

The study has several limitations. First, the study was retrospective 
which may have led to possible selection bias. It is possible that the 
positive rate of LVI positivity among the participants may not reflect the 
true situation. The inclusion and exclusion criteria were applied strictly 
to ensure the definite inclusion of LVI in the study. Future prospective 
studies should be conducted to further validate the model. Second, the 
combined model was not found to be superior to either the clinical or DL 

models. This may be because the combined model faces the problem of 
multi-modal data fusion. Therefore, the combined model did not show 
superiority over the clinical and imaging data of a single modality. 
Future studies should address the issue of multimodal data fusion with 
further model adjustments. Third, the study used CT images acquired 
from different machines, with different manufacturers, and using 
different protocols. Standardization of the imaging data, as far as 
possible, would allow greater generalization of the model. However, 
data standardization is a difficult problem that will require future so
lution. Nonetheless, we consider that this heterogeneity in CT images is 
an accurate reflection of real-world clinical data, and thus a trained DL 
system based on such data would be more applicable to real-world 
clinical practice. Fourth, the data used for survival analysis were 
derived from a relatively small number of cases as the follow-up time 
was limited to five years. Further verification is required from large- 
sample studies in the future. 

Conclusion 

In conclusion, this DL algorithm using 3D-ResNet-9 based on CT 
images offers convenient and potentially useful assistance for the pre
operative prediction of LVI in patients with clinical stage IA lung 
adenocarcinoma. The integrated model combining multimodal imaging 
data with clinical and radiological data may thus be useful for the pre
operative prediction of LVI. This model may also assist with preopera
tive clinical decision-making. 
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Table 5 
Multivariate Cox Regression Analyses of Disease-Free Survival in Patients with Clinical Stage IA Lung Adenocarcinoma   
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Variable HR (95 %CI) p value HR (95 %CI) p value HR (95 %CI) p value HR (95 %CI) p value 
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Fig. 6. Prognostic value of the DL signature in Clinical Stage IA lung adenocarcinoma. Kaplan-Meier survival curves according to pathological LVI status (a), or their 
LVI status as predicted by the clinical model (b), DL model (c), and combined model (d). DFS = disease-free survival, DL = deep learning, LVI = lymphovas
cular invasion. 
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plications for patient treatment and clinical outcomes. While most 
studies have focused on the assessment of assessing LVI-related 
morphological characteristics in CT images, such assessments are not 
always accurate as the identification of specific features is strongly 
dependent on the expertise of the radiologist. Deep learning (DL) algo
rithms allow automated characterization of data, such that imaging data 
associated with particular regions of interest can be transformed into 
high-resolution spatial data from which features can be extracted and 
analyzed. To date, few studies have sought to apply DL as a means of 
predicting LVI status. This study was designed with the goal of estab
lishing and validating a CT-based DL model capable of predicting LVI 
status and stratifying patients based on their prognostic outcomes. The 
analysis showed that the model outputs were independently predictive 
of both LVI status and disease-free survival in patients with clinical stage 
IA lung adenocarcinoma, and allowed the identification of latent char
acteristics underlying clinical assessments and semantic features. 
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