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We present a machine-learning-driven framework for discovering high-performance rare-earth-free hard
magnetic materials integrating machine learning, a universal graph deep-learning interatomic potential, and
density functional theory validation. Key contributions include the identification of FeCo-based ternary alloys
with remarkable magnetic properties, such as uniaxial anisotropy constant, K,, Curie temperature, 7, and
saturation magnetization, Mg. Notable examples include Fe,CoB, and FeCosB, which exhibit K, values of
1.76 MJ/m? and 1.00 MJ/m?, respectively, with Mg above 1.3 T, and T exceeding 600 K. These properties
align with the needs of high-temperature and high-performance applications. The universal graph deep-learning
interatomic potential M3GNet accelerates the structural relaxation process, enabling the efficient screening of
48,000 candidate structures, while density functional theory validates the top performers with energy product

(BH)

'max

reaching more than 600 kJ/m?. Our study highlights a scalable, efficient pipeline for advancing the

discovery of permanent magnets, reducing reliance on rare-earth elements.

1. Introduction

Magnetic materials are integral to modern technological advance-
ments, driving significant research and development efforts to en-
hance their performance, efficiency and cost-effectiveness. Permanent
magnets serve as foundational components in various applications,
including traction motors, loudspeakers, wind turbines, magnetic re-
frigeration, and cancer thermotherapy [1,2]. Despite their crucial role,
the traditional trial-and-error approach to materials discovery remains
slow and costly, often requiring decades for new materials to transition
from laboratory research to commercial applications [3].

Recent shifts toward computational materials discovery, enabled
by supercomputers and first-principles physics, offer promising alter-
natives. Large-scale computational infrastructures can now determine
the ground state of solid-state inorganic crystals in a high-throughput
manner within the framework of Density Functional Theory (DFT). This
approach significantly accelerates the discovery process, reducing the
time and cost associated with experimental trials [4].

Databases such as the Open Quantum Materials Database (OQMD)
[5], the Automatic Flow of Materials Discovery Library (AFLOWLIB)

[6], and the Materials Project (MP) [7] provide extensive repositories
of thermodynamic and electronic properties. However, key magnetic
properties, such as the magnetocrystalline anisotropy energy (MCA),
and the Curie temperature (7), are underrepresented in these reposi-
tories. This is due to the high computational costs associated to their
calculation [8,9]. For example, the MCA is an intrinsic relativistic phe-
nomenon arising from spin—orbit coupling (SOC), and typically involves
the evaluation of tiny energy differences [10]. Similarly, computing
T is a complex process, where one typically maps DFT total-energy
calculations onto a Heisenberg-type model and then either performs
Monte Carlo simulations or evaluates mean field theory (MFT) expres-
sions [11]. Moreover, magnetism is often governed by electrons in the
localized 4f and 3d shells, a fact that pose challenges to standard DFT
methodologies. These limitations are addressed using auxiliary methods
such as DFT+Hubbard-U [12,13] or the integration of dynamical mean
field theory (DMFT) [14]. While these approaches improve the accu-
racy of the predictions of magnetic properties, they are computationally
prohibitive for high-throughput workflows, creating a bottleneck for
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generating the high-fidelity datasets required for developing robust
machine-learning (ML) models.

For materials with a simpler electronic structure and spin arrange-
ment, a discovery workflow combining high-throughput computational
approaches with ML has shown considerable promise in identifying
new magnetic compounds. For instance, Sanvito et al. used DFT to
generate a large database of magnetic properties of Heusler alloys, and
trained a ML model to evaluate their 7. This enabled the discovery of a
novel high-T. ferromagnet, Co,MnTi, and a complex antiferromagnet,
Mn,PtPd, then synthesized in the lab [15]. Halder et al. employed
DFT and ML models to predict and optimize the magnetic proper-
ties, stability, and efficiency of rare-earth-lean magnets. They demon-
strated that Ce,Fe,;_,Co,CN offers potential to be a cost-effective
and high-performance permanent magnet [16]. Xia et al. developed
a machine-learning-guided adaptive genetic algorithm in conjunction
with a crystal-graph convolutional neural network (CGCNN) to effi-
ciently screen Fe-Co-B compounds as high-performance, rare-earth-free,
magnetic materials. Their approach involved training a ML model on
DFT-calculated structures to predict formation energies, which in turn
enabled the selection of stable Fe-Co-B systems with large magnetocrys-
talline anisotropy and high Curie temperatures. Notably, they also
synthesized Fe;CoB,, which was confirmed to display strong magnetic
properties, including K, ~ 1.2MJ/m® and J, ~ 1.4T. The enhanced
anisotropy was attributed to the boron incorporation into the Fe-Co
matrix. [17]. In another study, Xia et al. [18] developed a machine-
learning-guided framework, combining CGCNN and an adaptive genetic
algorithm, to discover Fe-Co-C ternary compounds with high magnetic
anisotropy. In particular, they, identified five metastable and dynami-
cally stable candidates with K; > 1.0 MJ/m3, J, > 1.0 T, and T, > 840 K.
Liao et al. conducted a machine-learning-accelerated search across the
Fe-Co-P ternary space, identifying 16 new structures below the convex
hull, including five with J; > 1 T and promising anisotropy, with
Fe,CoP, emerging as the top candidate (J, = 1.03 T, K; = 0.83 MJ/m?)
as a rare-earth-free permanent magnet [19].

We also acknowledge recent related works by Schmidt et al. [20]
and Vishina et al. [21], which offer complementary machine-learning
and experimental perspectives on the discovery of rare-earth-free mag-
netic materials. Schmidt et al. developed a crystal graph attention
network (CGAT) capable of predicting thermodynamic stability (dis-
tance to convex hull) without requiring fully relaxed crystal structures.
By combining prototype-based modeling with attention-based mes-
sage passing, their approach enables high-throughput discovery of
stable compounds across millions of hypothetical compositions. Vishina
et al. proposed a new class of rare-earth-free permanent magnets
based on the Co;Mn,Ge compound, identified through high-throughput
data mining and validated experimentally. Lastly, Horton et al. devel-
oped a framework that predicts the magnetic ground state of crystals
(ferromagnetic, antiferromagnetic, or ferrimagnetic) and their associ-
ated magnetic moments using collinear spin-polarized DFT in a high-
throughput manner, achieving around 60% accuracy on experimental
datasets [22].

In this work, we present a pipeline for the discovery of permanent
magnets that generates ternary magnetic alloys and predicts their key
hard magnetic properties, including easy axis anisotropy (K, ), magnetic
transition temperature (7¢), and saturation magnetization (Mg). Our
methodology involves three main steps. Firstly, regression ML models
are trained to predict Mg and T, while a classification ML algorithm
predicts whether a structure is likely to exhibit an easy magnetization
axis. These are all based on structural features. The classifier serves
as a screening tool to select materials that are likely to exhibit easy
axis anisotropy as opposed to easy plane one. Secondly, new structures
are generated by substituting Fe and Co at transition-metal (TM) sites
and boron or nitrogen at non-TM sites within ternary alloys sourced
from the AFLOW repository. Structural relaxation is performed using
the M3GNet universal potential [23]. Finally, the trained ML mod-
els predict the key magnetic properties of these structures, and the
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top candidates are then selected based on their magnetic properties
and structural stability against decomposition. The properties of these
candidates are subsequently evaluated via DFT.

In particular, we aim at developing rare-earth-free permanent mag-
nets, considering the limited availability and supply-chain vulnerabil-
ities of rare-earth resources. The choice of elements in our approach
is deliberate: Fe is used for its role in providing high Mg, Co con-
tributes significantly to the MCA, and elements such as nitrogen and
carbon enhance the structural stability and may increase T [10,24,
25]. Our multipronged strategy allows for the exploration of diverse
compositions and helps to determine the optimal compositional ratios
necessary to achieve the desired combination of magnetic proper-
ties and stability. This approach is critical for designing sustainable
and high-performance permanent magnets. The overall framework is
illustrated in Fig. 1.

The key contributions of this paper are as follows: (1) the use
of robust ML models to predict critical magnetic properties, enabling
scalable screening of structures; (2) the application of M3GNet graph
neural networks to accelerate structural relaxations, reducing compu-
tational demands compared to DFT; and (3) the rigorous validation of
top-performing, structurally stable materials using DFT.

2. Methods
2.1. Dataset generation

The first stage of our materials discovery pipeline involves curating
three separate datasets for training the ML models. These models are
designed to predict (i) Mg, (ii) T, and (iii) the easy axis anisotropy.
Magnetic moment data and corresponding structures for approximately
150,000 compounds were downloaded using the Materials Project (MP)
APL This data was used to train the magnetic moment regressor using
the universal-graph deep-learning architecture M3GNet [23].

Although there are T datasets that are generated using natural lan-
guage processing methods [26], their accuracy still could not achieve
to those developed manually. Therefore, we began with the T dataset
manually compiled as used in Gilligan et al. [27], which consists of
approximately 5400 compounds with compositions and corresponding
T values. Since we aimed to train a T model using structural infor-
mation, we obtained the structures for these compositions from the
MP [7] and AFLOW [6] APIs. These databases often contain multiple
structures for the same composition due to polymorphs or hypothetical
structures analyzed for stability. For each composition, only the stable
structures on the convex hull were retrieved, which refer to the crystal
structures that are thermodynamically stable with respect to decom-
position into competing phases. These structures lie on the convex
hull constructed with the formation energies of all known phases at
a given composition. Only the lowest-energy structures that define this
convex envelope are considered stable. Out of the 5400 compounds,
approximately 1500 records met this requirement. We acknowledge
that T, can differ across different polymorphs of the same composition.
However, our T dataset is experimentally derived and lacks explicit
structural information. Therefore, to associate each composition with
a physically meaningful structure, we retrieved only the lowest-energy
phase on the convex hull from DFT-based databases. These structures
are more likely to correspond to experimentally observed configura-
tions, whereas unstable polymorphs above the hull could introduce
inaccuracies and ambiguity when linking to experimental T values. In
addition to the stability requirement we set, this limited availability of
records arises also because the manually curated 7. dataset primarily
includes disordered alloys, while the MP and AFLOW repositories focus
on ordered structures.

For the classifier predicting the presence of an easy axis in a
structure, we utilized the magnetic materials database from Sakurai
et al. [28], which includes structures and MCA values for 3826 com-
pounds. These mainly consist of TM elements, with Fe and Co as major
constituents, due to their magnetic properties. This composition aligns
with our study, as we primarily substitute Fe, Co, B, and N in the newly
generated structures.
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Fig. 1. Machine learning pipeline to discover new hard magnetic materials.

2.2. Training the machine learning models

M3GNet was used to train on the magnetic moment dataset com-
prising approximately 150,000 compounds. M3GNet is a graph-based
deep-learning architecture, where the nodes represent the atoms and
the edges the bonds of a crystal structure [23]. When trained on
large datasets, graph-based networks outperform classical ML models
that use simpler composition-based features [29,30]. The Adam op-
timizer [31] was used with an initial learning rate of 0.001, which
decayed to 1% of its original value over 100 epochs using a cosine
schedule. A batch size of 128 was used, with training completed in 750
epochs. The loss function employed was mean squared error (MSE).

For the T, regressor and easy axis classifier, we utilized Matminer’s
structural feature generators along with a random forest (RF) model
[32]. Each structure was used to generate features, including: (i) AG-
NIFingerprints, which integrate the radial distribution function and a
Gaussian window function [33]; (ii) OPSiteFingerprint, representing
local structural order parameters computed from a site’s neighboring
environment; and (iii) OrbitalFieldMatrix, which encodes the valence
shell electron configurations of neighboring atoms. These combined
features provided optimal performance on validation datasets for both
the regressor and classifier. The RF models were implemented using
scikit-learn [34] with 200 trees in the forest and a maximum depth of
20 for each tree.

2.3. Structure generation and relaxations

We began by downloading all ternary compounds composed of
two TM elements and one non-TM element from the carbon group,
boron group, pnictogens, or chalcogens using the AFLOW API [6]. This
process yielded approximately 1.5 million structures, including experi-
mentally derived and hypothetical structures. These were modified by
substituting Fe and Co at the TM sites and B or N at the non-TM sites.
For a generic composition TM!-TM2-nonTM_, the following structures
were generated: Fe,-Co,-N_, Co,-Fe,-N_, Fe,-Co,-B, and Co,-Fe,-B..
Duplicate structures were removed using Pymatgen’s StructureMatcher
algorithm [35], resulting in a dataset of approximately 48,000 unique
structures. We note that this approach considers only one represen-
tative atomic configuration per stoichiometry. While multiple spatial
arrangements may exist for a given composition, we have selected a
single ordered configuration for computational efficiency. We believe
this is a reasonable compromise that enables screening a broad design
space, while recognizing that more exhaustive configurational sampling
could be pursued in future work.

Before inference, these structures were relaxed using the M3GNet
Interatomic Potential (IAP) graph network, trained on 187,000 en-
ergies, 16,000,000 forces, and 1,600,000 stresses from the Materials

Project [23]. M3GNet was chosen for its efficiency in predicting struc-
tural properties, making it ideal for relaxing a dataset large enough to
be impractical for DFT-based methods.

M3GNet extends CGCNN [36] graph-based representation by incor-
porating explicit three-body interactions, thereby capturing the multi-
body correlation crucial for an accurate evaluation of the potential-
energy surface and enabling both structural relaxations and molecular
dynamics across diverse compositions. The focus on multi-body interac-
tions and energy-force consistency grants M3GNet a high transferability
and the flexibility to be applied to large-scale materials discovery.
Adding to that, Xia et al. [17] introduced an adaptive genetic algorithm
that refines its machine learning potential by iterating between candi-
date structure generation and targeted DFT validations, systematically
improving accuracy when exploring high-anisotropy compounds. In
our study, we do not utilize such an adaptive framework; instead,
our approach leverages a large array of structural prototypes from the
AFLOW repository to generate candidate structures, thus providing a
broad sampling of compositions without iterative retraining.

2.4. DFT calculations

DFT calculations were performed using the projector augmented
wave (PAW) method as implemented in the Vienna Ab-initio Simu-
lation Package (VASP) [37]. The exchange-correlation functional was
described using the generalized gradient approximation (GGA) in the
Perdew, Burke, and Ernzerhof (PBE) form [38]. A kinetic-energy cutoff
of 600 eV and the tetrahedron integration method [39] were employed.
The convergence criteria were set to 10~ eV for the total energy
and 10~3 eV/Afor the forces during ionic relaxation, with structural
optimizations performed for both the cell volume and atomic positions.

The MCA was calculated using the magnetic force theorem [40-42].
This involved two steps: (i) a scalar-relativistic collinear charge self-
consistent calculation to derive the charge density, followed by (ii) a
non-self-consistent calculation, including spin—orbit coupling (SOC), to
compute the total band energies for magnetization aligned parallel,
Epana, and perpendicular, E,,,q, to the crystal plane. The MCA was
then determined as Eyjca = Epana,| = Epana, - This approach aligns well
with prior studies on ferromagnetic systems [16,43].

The Monkhorst-Pack (MP) scheme was used to generate the k-
point grid, ensuring convergence of the MCA energy to 10~% eV/atom.
Although MCA energies are small (typically on the order of meV), this
approach reliably identifies anisotropic compounds.

At the lowest order the energy expression for the anisotropy of
a magnet of volume V is determined by the K, anisotropy constant,
through

E@®)/V =K, sin’6.

If K, > 0, then the energy has minima at § = 0 and 0 = =,
which corresponds to easy-axis anisotropy. In the case of negative
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K, the energy minimum occurs at § = x/2, where we have easy-
plane anisotropy. However, the situation is different for low-symmetry
crystal systems such as the orthorhombic, monoclinic and triclinic. In
such cases, the anisotropy energy density up to second order can be
expressed [44] as

E(0.¢)/V = K, sin” 0 + K] sin® 6 cos(2¢) .

where K, and K| can be calculated from the energy differences between
two interplanar and intraplanar magnetization directions [45].

In this study, K; was calculated using the first expression for all
the 43 compounds as part of the primary screening. Due to computa-
tional limitations, the in-plane direction was restricted to [100] only.
However, additional energy calculations have been performed along
the [010] direction for a few most promising prototypes. Based on
these results, the top five candidates have been selected. Our results are
presented in Table 1. For the three lower-symmetry structures, both K,
and K| are reported.

3. Results and discussions
3.1. Models predicting magnetic properties

We trained three separate machine learning models to predict
key hard magnetic properties: Mg, T and easy axis anisotropy. The
M3GNet graph network was trained on magnetic-moment data for
150,000 structures downloaded from the Materials Project. This dataset
includes magnetic moments for materials in ferromagnetic, antiferro-
magnetic, ferrimagnetic and non-magnetic configurations. The model
was trained for 750 epochs, with results for the training and validation
datasets, as well as prediction plots for the test sets, shown in Fig. 2.

As shown in Fig. 2(a), the validation mean absolute error (MAE)
of the magnetization model stabilizes around 0.15 MB/A3- While this
may appear large in absolute terms, it is important to recognize that
the magnetization distribution is highly inhomogeneous, with most
values clustered around zero and a long tail extending up to ap-
proximately 0.24 yB/f\3. As a reference, the magnetic polarization of
elemental Fe and Co is estimated at 0.225 ug/A3 and 0.146 uy/A3,
respectively, providing a useful context for interpreting the predicted
values. For comparison, a trivial mean predictor achieves a MAE of
0.0201 up/A3, highlighting the challenge posed by this data distribu-
tion. Although restricting the training set to high-moment materials
could reduce the prediction error, such an approach would bias the
model toward overestimating magnetization. Our goal, instead, is to
train a model that generalizes well across the full spectrum of magnetic
behaviors. The so-constructed model achieves a R? score of 0.64 [see
Fig. 2(b)], demonstrating its capability to capture meaningful trends
and to distinguish between low- and high-moment candidates.

We also note that a related machine-learning model developed by
Liao et al. [46] predicted total magnetic moment per unit cell in Fe-
Co-N compounds with a root-mean-square error (RMSE) of 2.8 pp/cell.
To compare this to our magnetization model, we converted their RMSE
into an equivalent per-volume MAE using an average unit cell volume
of 120 A3 for Fe-Co-N structures. This yields an estimated MAE of
approximately 0.018 y;/A3. While our reported MAE of 0.15 uy/A3 is
higher, the difference is expected due to our model’s broader chemical
scope, which includes both magnetic and non-magnetic materials.

Examining the prediction plot in Fig. 2(b), the graph networks
clearly perform better when trained on properties such as forma-
tion energy, bulk modulus, or band gap [47], compared to the mag-
netic moment. Magnetic moments are highly sensitive to the choice
of initial spin configurations, the presence of multiple competing mag-
netic states, and the limitations of standard exchange—correlation func-
tionals in capturing electronic correlation effects. Furthermore, high-
throughput DFT workflows often lack robust protocols for systemati-
cally determining the magnetic ground state [22], a feature that can
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lead to inconsistencies in the reported magnetic data. These factors con-
tribute to greater uncertainty in the training data, and ultimately, lower
model performance for the magnetic-moment prediction. Nonetheless,
an R? of approximately 0.64 suggests that the model captures meaning-
ful trends in the data and can help distinguish materials with relatively
high magnetic moments. It is also worth noting that the machine
learning models in this study are used primarily as a screening tool,
with the final magnetic properties of selected candidates validated
through direct DFT calculations.

Fig. 3 presents the parity plot for the T model computed over the
test dataset. The model demonstrates the ability to predict T, across its
entire range, achieving a mean absolute error (MAE) of 75.6 K, which
is comparable to the value of 57 K reported by Sanvito et al. [48]. Often
T models underperform, particularly at high temperatures, due to the
lack of training data in this range [48,49]. This limitation is common
when models are trained using only compositional features. We further
evaluated the model’s performance in the high-T. range and found that
the MAE for compounds with 7 > 300 K is approximately 130 K. While
this is higher than the overall MAE, it a result that reflects the greater
spread of values at high temperatures. Despite this, the model still
captures meaningful trends and remains useful for screening materials
with high T¢.

Among the three models, predicting the MCA via regression proved
to be the most challenging task. The difficulty stems from the lack
of high-quality datasets, a fact that is linked to the computational
complexity of calculating MCA values using DFT. As discussed in
Section 2.1, we used the magnetic materials database from Ref. [17],
which contains MCA values for approximately 3826 compounds along
with their structures. We acknowledge that magnetocrystalline
anisotropy (MCA) is a particularly difficult property to model using
machine learning. This challenge stems not only from the inherent
complexity of the MCA itself, which originates from subtle spin—orbit
coupling effects, but also from the limitations of standard feature
representations. The feature sets employed in this study, including
composition-based fingerprints, local structural order parameters, and
graph-based embeddings, do not explicitly capture critical physics such
as crystal symmetry breaking, heavy-element orbital contributions, or
spin—orbit-induced anisotropy. These limitations significantly hinder
the model’s ability to generalize across diverse material classes. Al-
though the MCA data from Sakurai et al. [28] are of generally high
quality and benchmarked against experimental values, the regression
performance was ultimately constrained by descriptor sufficiency and
model expressiveness. This suggests that future progress in MCA pre-
diction will require incorporating symmetry and SOC aware descriptors
tailored to the anisotropy problem, a direction we plan to explore in
follow-up work.

In order to address these issues, we reformulated the problem as a
classification task. Materials with negative MCA values were classified
as easy plane and labeled as 0, while those with positive MCA were
classified as easy axis and labeled as 1.

Fig. 4 shows the confusion matrix for the classifier. The model’s
performance, measured by the overall accuracy, was 0.66 on the test
dataset. In a similar line of work, Xie et al. [50] developed an MCA
classifier for 2D materials only for structures that are derived from
changing the chemical composition of the ferromagnetic semiconductor
Cr,Ge,Teg, and achieved an accuracy of approximately 0.77. Given the
diverse composition of our dataset, our model demonstrates sufficient
predictive capabilities. As such, it serves as an effective screening
tool to identify materials with a high likelihood of exhibiting easy
axis anisotropy, providing a straightforward yet powerful filter for
prioritizing candidates for further investigation.

It is important to note that all magnetocrystalline anisotropy (MCA)
values reported in this study, both from DFT and ML, correspond to
calculations performed at 0 K. No explicit temperature corrections
were applied to the ML training data or the DFT-validated struc-
tures. As such, the reported K, values describe a ground-state property
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and may differ from those measured experimentally at finite tem-
peratures. This limitation is inherent high-throughput DFT datasets
incorporating MCA and is now acknowledged here for clarity. Incor-
porating temperature-dependent effects remains an important direction
for future work.

3.2. M3GNet relaxation of new structures

When new structures are generated by substituting Fe, Co, B, and N
into those obtained from AFLOW, both the atomic positions and lattice
constants require optimization. DFT is the standard method for lat-
tice relaxations; however, it is computationally demanding. Given the
approximately 10,000 unique structures generated in this study, per-
forming DFT relaxations on all of them is a large resource-consuming
numerical task. In contrast, machine-learned interatomic potentials
(IAPs) have demonstrated significant precision as surrogate models
for property predictions, structural relaxations, and other tasks [23].

Calculated easy axis

easy axis

T
easy plane

easy axis
Predicted easy axis

Fig. 4. Confusion matrix for the easy axis classifier model. The model predicts whether
a material is likely to have easy plane or easy axis anisotropy, but does not provide
an estimate for the magnetocrystalline anisotropy energy.

M3GNet, in particular, has been shown to relax arbitrary crystal struc-
tures at scale, making it an ideal choice for our materials discovery
pipeline.

The M3GNet IAP was applied to these new structures, for which
the final relaxed geometries were not known a priori. Fig. 5(a) and
Fig. 6(a) show the cumulative distributions of volumes and energies
of the crystal structures before and after M3GNet relaxation. The hor-
izontal dashed lines mark the 50th, 80th, and 95th percentiles of the
distributions (from bottom to top, respectively). Overall, the relaxation
process leads to significant changes in both volume and energy, as
expected. From the two figures, it is evident that more than 50%
of the structures experienced volume changes greater than 35% and
energy reductions exceeding 23%. Based on the energy lowering during
relaxation, it is safe to state that M3GNet IAP was effective in relaxing
the hypothetical crystals in a high-throughput manner. It is also worth
mentioning that, while this served as an initial relaxation step, we
performed further rigorous crystal optimizations for the top candidates
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volumes before and after relaxation, relative to the initial volumes. Volumes refer to the total unit cell volumes of the structures before and after M3GNet relaxation.
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Fig. 6. Analysis of the M3GNet-driven crystal-structure relaxation: (a) Cumulative distribution of energies before and after M3GNet relaxation; (b) differences between energies
before and after relaxation, relative to the initial energies. Energies represented are per unit cell.

during our DFT validation. To evaluate the accuracy of the M3GNet-
relaxed geometries, we compared them to those obtained after full DFT
optimization. As shown in Fig. 7, DFT refinement results in slightly
smaller volumes, indicating that M3GNet provides a reasonable initial
approximation that is further fine-tuned by DFT. The close clustering of
points around the parity line confirms the overall consistency between
the two relaxation methods. Lastly, we wish to remark that the M3GNet
IAP relaxation does not provide information about thermodynamical
stability. This requires further analyses, such as the prediction of the
formation energy and the evaluation of the material’s convex hull
diagram. These aspects will be discussed in the next section.

3.3. Inference on the generated structures

The first step in assessing the thermodynamical stability of the
generated structures involves predicting their formation energy. This
is defined as the energy of the compound relative to the energies
of its constituent elements in their lowest energy structure. A nega-
tive (positive) formation energy indicates that the compound is stable
(unstable) against decomposition into its associated elemental phases.
The formation energies of the hypothetical crystals generated in this

study were predicted using the M3GNet graph network, which was
trained on the Materials Project dataset with prediction errors below
30 meV/atom [47]. The distribution of formation energies is shown in
Fig. 8, where it emerges that more than half of the structures are stable
against elemental decomposition.

A more stringent stability assessment involves conducting a convex
hull analysis, which compares the formation energy of a given com-
pound to those of all known competing phases with the same composi-
tion. In particular, the analysis identifies the three nearest phases that
form the vertices of the Gibbs triangle enclosing the compound’s com-
position. PyMatGen [35] was used to perform this comparison against
known structures in the Materials Project database. The energy above
the hull is defined as the energy difference between the formation en-
ergy of a compound and the energy of the lowest-energy combination of
competing phases at the same composition (most favorable decomposi-
tion). This value is denoted as E,,;; and serves as a key thermodynamic
stability metric. A compound with E, , = 0 lies exactly on the convex
hull and is predicted to be thermodynamically stable at zero tempera-
ture. Positive values of E; indicate metastability, with larger values
implying a greater driving force toward decomposition. Compounds
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with E,  less than 50-100 meV/atom are often regarded as potentially
synthesizable, particularly under non-equilibrium synthesis conditions.

The results of such convex hull analyses are illustrated in Figs. 9(a)
and 9(b) for the FeCoB- and FeCoN-type hypothetical structures, respec-
tively. Although none of the hypothetical structures investigated here
is below the tie plane of the convex hull, many structures lie close, with
inverse hull energies smaller than 100 meV/atom. As a general guide-
line, materials with inverse hull energies below 100-300 meV/atom
may be considered metastable [49]. Metastable structures can often be
synthesized in experimentally by using non-equilibrium methods such
as melt-spinning or ball milling [51].

The next stage in the materials discovery workflow uses ML models
to predict key magnetic properties, namely Mg, T and easy axis MCA.
Fig. 10 reports E,, against Mg for the new structures, which satisfy
our ML easy axis MCA screening, namely those structures that are
likely to be easy axis anisotropic. Our goal is to identify new hard
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magnetic materials with large MCA, high Mg and high T,.. The stability
criterion dictates that the formation energy of a compound must lie
below or close to the convex hull. Therefore, we selected magnets with
Ep, values less than 100 meV and Mg values greater than 1.34 T.
This essentially corresponds to select potentially metastable structures
with attractive magnetic performance. In addition, compounds with T
above 600 K were filtered, as 600 K sets the boundary of magnets
useful for every-day consumer applications. These criteria yielded 43
promising compounds, which were moved to further DFT validation.

3.4. Ab initio validation of the predicted structures

We now present our DFT results for the 43 compounds resulting
from the ML screening. These comprise 37 FeCoB-type and 6 FeCoN-
type structures. The calculated yyMg and K, values are shown in Fig.
11. Among these, 26 compounds exhibit yy M, > 1 T (highlighted by the
red-shaded area), while 18 have K, > 0 (blue-shaded area), indicating
easy axis anisotropy. The agreement between the ML-predicted u,Mg
values and the DFT calculations is over 60%, slightly higher than the
agreement obtained for K, which is at approximately 44%. Compounds
meeting both criteria (oM, > 1 T and K, > 0) are considered potential
candidates as hard magnets. There are 13 of them, as indicated by the
overlap of the red and blue shaded areas in Fig. 11. These compounds
clustered into 2-3 groups, with the largest group exhibiting high uyMg
values and predominantly low K, values, along with a few moderate
and 1-2 high K, values.

Although K, and py,Mg provide valuable insights into a material’s
suitability as a permanent magnet, technologically relevant properties
such as the maximum energy product, (BH),,., and the anisotropy
field, H,, are more relevant. These can be calculated using K, and u, M,
as follows

(Ho M, s)z 2K,
(BH)pax = Tam H, = oM,
where (BH),,,, corresponds to the highest theoretical maximum, disre-
garding possible non-ideal hysteresis loop shapes.

In Fig. 12, we present (BH),,, for all the compounds and H,
for most of them, excluding those with extremely small K, or u,Mg,
resulting in a disproportionately large H,. Compounds with (BH),,,, >
200 kJ/m?® and H, > 1 T are highlighted in the shaded regions. The
computed (BH),,,, range in the 200-700 kJ/m? interval for more than
20 compounds, values comparable to commercially available hard-
magnets, like Nd,Fe;,B (516 kJ/m?) and SmCos (219 kJ/m?) [52].
Note, however, that our calculations overestimate (BH),,, (possibly
by about 10%), since bulk magnetic materials typically have hysteresis
loop that deviate from an ideal shape, due to microstructuring, grain
boundaries, etc. In contrast, the H, ranges from —4 T to 4 T, with at
least 10 compounds exhibiting H, > 1 T, highlighting their potential
for easy axis anisotropy.

Another important metric for classifying magnets as hard, semi-
hard, or soft is the hardness parameter, x, which is calculated as

K,
Ho M

A magnet is hard if « > 1. Our calculations identified 5-6 compounds
with x =~ 1, indicating their potential for hard magnet applications.
The top five candidates were selected based on the criteria yyM, > 1
T and K; > 0. Key magnetic properties, including K, uyMg, (BH)yaxs
Kk, as well as the convex hull energy, Ej ;, and the formation energy,
Egom» are listed in Table 1, together with their corresponding crystal
space group symmetries, as shown in Fig. 13. All compounds are
stable against decomposition into their constituent elements, as Eg.,
is negative for all of them. Among the listed compounds, Fe,CoB,
exhibits the highest K;, 1.763 MJ/m>, combined with a substantial
UoMg of 1.736 T, leading to a high (BH),,,,, namely 600.175 kJ/m?>.
This compound also shows a relatively low energy above the convex
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Table 1

DFT-calculated formation energies and intrinsic magnetic properties of the top permanent-magnet candidates. The structures are shown in Fig. 13. Estimates of T, and E, are

provided with the ML model.

Compound Crystal Epan Eform K, (K}) BH,,, uyMg (T) pug/fu K Te (K)
symmetry (meV/atom) (meV/atom) (MJ/m?) (kJ/m?)

FeCosB Tetragonal 68.521 —-170.251 1.001 (-) 376.249 1.374 8.279 0.816 785

Fe,,CoB; Trigonal 96.553 -71.708 0.559 (-) 633.376 1.783 21.029 0.470 681

Fe,CoB, Monoclinic 30.431 —-215.781 1.763 (0.608) 600.175 1.736 12.783 0.857 624

Fe,CoB Orthorhombic 78.296 —154.807 0.598 (0.383) 688.377 1.860 10.069 0.466 605

Fe,CogN Monoclinic 90.031 —38.248 0.223 (-0.036) 507.428 1.596 12.594 0.332 666

hull, E,;; = 30.4 meV/atom, indicating the possibility of metastabilty.
The second notable candidate is FeCosB, with K, = 1.001 MJ/m?,
(BH) = 376.248 kJ/m?, and E,;; = 68.5 meV/atom. In the case of
Fe,(CoB;, a moderate K; of 0.559 MJ/m? is combined with a high

(BH),,x of 633.376 kJ/m’ and E, = 96.5 meV/atom. A similar
situation is observed for Fe,CoB, which combines a moderate K, of
0.598 MJ/m? with the highest (BH),,,, of 688.377 kJ/m? and p,Mg of
1.860 T. The only nitride-based compound in the list is Fe,CogN, which
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Fig. 11. The density functional theory-calculated anisotropy constant, K, and satura-
tion magnetization u,Mg are presented for all compounds. Positive (negative) values
of K, indicate an easy axis (easy plane) preference for the magnetization. The blue-
shaded area highlights compounds with easy axis anisotropy, while the red-shaded area
indicates compounds with p,Mg greater than 1 T.

shows a substantial (BH),,,, of 507.428 kJ/m? and u,Mj of 1.596 T,
although K; = 0.223 MJ/m? is relatively low compared to the other
four compounds.

In this context, it is worth mentioning that the orbital magnetic
moments of these compounds is primarily determined by the Co and
Fe atoms. The magnitude for Co (0.03-0.1 up) is slightly larger than
that for Fe (0.009-0.063 up). The difference in the total orbital moment
between the two magnetization directions is related to the MCA, which
is consistent with the perturbative expression of the MCA energy as
shown by Bruno [53].

In Xia et al. [17], several Fe-Co-B compounds were reported dis-
playing strong intrinsic magnetic properties. Fe;CoB, stands out with
K, = 1.34 MJ/m?, J, = 140 T, and a low E,,; = 22.8 meV/atom,
a compound that was also experimentally synthesized. Based on the
space group information (Cmmm) provided by Xia et al. [17], we
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Compound index

Fig. 12. Calculated maximum theoretical energy product, (BH),,, (upper panel) and
anisotropy field, H, (lower panel) for all the screened compounds. The shaded regions
highlight compounds with (BH),,,, > 200 kJ/m* and H, > 1 T.

confirm that the Fe;CoB, compound is indeed present in our generated
database. Its computed properties are: yyMg = 0.97 T, and T, = 508
K, with an energy above hull (E, ;) of 0.29 eV/atom. Despite having
respectable magnetic performance, this compound did not pass our
high-throughput filtering criteria, which included thresholds of T, >
600 K, yyMg > 133 T, and Ep,; < 0.1 eV/atom. Therefore, it was
not selected for DFT validation in the final round. We note that al-
though the compound appears in both studies under the same nominal
composition, differences in the specific Wyckoff site occupations and
structural relaxations may lead to variations in the predicted properties.

Other high-anisotropy compounds, such as certain Fe,CoB, poly-
morphs, exhibit K, values approaching 1.96 MJ/m? but with higher
E,, values exceeding 90 meV/atom. One of our prime candidates,
monoclinic FegCoB,, delivers K; = 1.76 MJm~3, yyM, = 1.74T and
Epgn = 30.4meVatom™!. Although the two compounds are crystallo-
graphically distinct, their similar compositions yield comparable en-
ergetics and magnetic performance, lending confidence to the predic-
tions. In addition, the fact that this compound was experimentally
realized while having E,,; = 22.8 meV/atom is promising, as Fe;CoB,,
shows a comparable E, ; of 30.4 meV/atom, indicating that it may also
be experimentally accessible.

Our tetragonal FeCosB and orthorhombic Fe,CoB can be compared
with the well-documented tetragonal (Fe,_,Co,),B series. For compo-
sition at x ~ 0.3 Edstrom et al. [11] reported K; = 0.42-0.63 MJ m3
and T, ~ 800-820 K, while our prediction range for these compounds is
K; = 0.60-1.00 MJ m~3 (see Table 1), hence corroborating the ML-DFT
pipeline.

Nitrides hard-magnet remain scarce. The reference thin-film phase
a'"-Fe gN, reaches up K, ~ 0.6 MJ m~3 [54], whereas theory yields
K, = 3.2 MJ m~3 for Fe;;,Co4N, [55]. We find that monoclinic Fe,CoNg
has K; = 0.22 MJ m~3 and pyM, = 1.60 T, values consistent with
these predictions. In addition, existing Fe-Co-N sputtered films are
magnetically soft in spite of their high M| [56], a fact that aligns with
our low K, prediction for these compounds.

Thus, taken all together, these comparisons show that the present
workflow (i) faithfully reproduces the intrinsic properties of experimen-
tally established magnets in the Fe-Co-B and Fe-Co-N systems and (ii)
uncovers several genuinely new, metastable boride and nitride phases
that are well within reach of modern rapid-quenching or thin-film
synthesis techniques.

For reproducibility, the CIF files of the top candidate structures have
been included as supplementary materials. These provide full crystal-
lographic information, including lattice parameters, atomic positions,
and species ordering, to facilitate verification and further analysis.
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Fig. 13. Crystal structure diagrams (primitive unit cell) of the most promising hard magnets with the associated space groups (SG). Their computed magnetic properties are listed
in Table 1. Fe, Co, B ad N atoms are represented by gold, blue, green and gray spheres respectively.

4. Conclusions

This study presents a robust high-throughput framework combining
machine learning (ML) and density functional theory (DFT) to stream-
line the discovery of high-performance hard magnetic materials. By
leveraging advanced ML models, structural relaxation using M3GNet,
and high-throughput DFT validation, this approach efficiently identi-
fies FeCo-based ternary alloys with exceptional magnetic properties,
including uniaxial anisotropy, saturation magnetization, and Curie tem-
perature. For example, Fe,CoB, demonstrates superior performance
with a uniaxial anisotropy constant (K;) of 1.763 MJ/m?, saturation
magnetization (Mg) of 1.736 T, and Curie temperature (7)) of 624 K.
Similarly, FeCosB exhibits K; = 1.001 MJ/m?, Mg = 1.374 T, and T,
= 785 K, while Fe,CoB achieves K; = 0.598 MJ/m>, Mg = 1.860 T,
and T = 605 K, making them strong candidates for high-performance
magnetic applications. Note that all these are not on the convex hull,
but they are sufficiently close to be considered metastable.

The integration of ML models for rapid screening and predictive
accuracy underscores the potential of data-driven methodologies to
overcome the limitations of traditional trial-and-error approaches to
materials discovery. This study not only highlights the feasibility of
accelerating materials discovery, but also provides a scalable and adapt-
able workflow for exploring other magnetic systems. Future efforts
will focus on refining predictive models, expanding the dataset, and
applying this pipeline to a broader range of material compositions.
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