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 A B S T R A C T

We present a machine-learning-driven framework for discovering high-performance rare-earth-free hard 
magnetic materials integrating machine learning, a universal graph deep-learning interatomic potential, and 
density functional theory validation. Key contributions include the identification of FeCo-based ternary alloys 
with remarkable magnetic properties, such as uniaxial anisotropy constant, 𝐾1, Curie temperature, 𝑇C, and 
saturation magnetization, 𝑀S. Notable examples include Fe6CoB2 and FeCo5B, which exhibit 𝐾1 values of 
1.76 MJ/m3 and 1.00 MJ/m3, respectively, with 𝑀S above 1.3 T, and 𝑇C exceeding 600 K. These properties 
align with the needs of high-temperature and high-performance applications. The universal graph deep-learning 
interatomic potential M3GNet accelerates the structural relaxation process, enabling the efficient screening of 
48,000 candidate structures, while density functional theory validates the top performers with energy product 
(𝐵𝐻)max reaching more than 600 kJ/m3. Our study highlights a scalable, efficient pipeline for advancing the 
discovery of permanent magnets, reducing reliance on rare-earth elements.
1. Introduction

Magnetic materials are integral to modern technological advance-
ments, driving significant research and development efforts to en-
hance their performance, efficiency and cost-effectiveness. Permanent 
magnets serve as foundational components in various applications, 
including traction motors, loudspeakers, wind turbines, magnetic re-
frigeration, and cancer thermotherapy [1,2]. Despite their crucial role, 
the traditional trial-and-error approach to materials discovery remains 
slow and costly, often requiring decades for new materials to transition 
from laboratory research to commercial applications [3].

Recent shifts toward computational materials discovery, enabled 
by supercomputers and first-principles physics, offer promising alter-
natives. Large-scale computational infrastructures can now determine 
the ground state of solid-state inorganic crystals in a high-throughput 
manner within the framework of Density Functional Theory (DFT). This 
approach significantly accelerates the discovery process, reducing the 
time and cost associated with experimental trials [4].

Databases such as the Open Quantum Materials Database (OQMD) 
[5], the Automatic Flow of Materials Discovery Library (AFLOWLIB) 
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[6], and the Materials Project (MP) [7] provide extensive repositories 
of thermodynamic and electronic properties. However, key magnetic 
properties, such as the magnetocrystalline anisotropy energy (MCA), 
and the Curie temperature (𝑇C), are underrepresented in these reposi-
tories. This is due to the high computational costs associated to their 
calculation [8,9]. For example, the MCA is an intrinsic relativistic phe-
nomenon arising from spin–orbit coupling (SOC), and typically involves 
the evaluation of tiny energy differences [10]. Similarly, computing 
𝑇C is a complex process, where one typically maps DFT total-energy 
calculations onto a Heisenberg-type model and then either performs 
Monte Carlo simulations or evaluates mean field theory (MFT) expres-
sions [11]. Moreover, magnetism is often governed by electrons in the 
localized 4f  and 3d shells, a fact that pose challenges to standard DFT 
methodologies. These limitations are addressed using auxiliary methods 
such as DFT+Hubbard-𝑈 [12,13] or the integration of dynamical mean 
field theory (DMFT) [14]. While these approaches improve the accu-
racy of the predictions of magnetic properties, they are computationally 
prohibitive for high-throughput workflows, creating a bottleneck for 
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generating the high-fidelity datasets required for developing robust 
machine-learning (ML) models.

For materials with a simpler electronic structure and spin arrange-
ment, a discovery workflow combining high-throughput computational 
approaches with ML has shown considerable promise in identifying 
new magnetic compounds. For instance, Sanvito et al. used DFT to 
generate a large database of magnetic properties of Heusler alloys, and 
trained a ML model to evaluate their 𝑇C. This enabled the discovery of a 
novel high-𝑇C ferromagnet, Co2MnTi, and a complex antiferromagnet, 
Mn2PtPd, then synthesized in the lab [15]. Halder et al. employed 
DFT and ML models to predict and optimize the magnetic proper-
ties, stability, and efficiency of rare-earth-lean magnets. They demon-
strated that Ce2Fe17−𝑥Co𝑥CN offers potential to be a cost-effective 
and high-performance permanent magnet [16]. Xia et al. developed 
a machine-learning-guided adaptive genetic algorithm in conjunction 
with a crystal-graph convolutional neural network (CGCNN) to effi-
ciently screen Fe-Co-B compounds as high-performance, rare-earth-free, 
magnetic materials. Their approach involved training a ML model on 
DFT-calculated structures to predict formation energies, which in turn 
enabled the selection of stable Fe-Co-B systems with large magnetocrys-
talline anisotropy and high Curie temperatures. Notably, they also 
synthesized Fe3CoB2, which was confirmed to display strong magnetic 
properties, including 𝐾1 ≈ 1.2MJ/m3 and 𝐽𝑠 ≈ 1.4T. The enhanced 
anisotropy was attributed to the boron incorporation into the Fe-Co 
matrix. [17]. In another study, Xia et al. [18] developed a machine-
learning-guided framework, combining CGCNN and an adaptive genetic 
algorithm, to discover Fe-Co-C ternary compounds with high magnetic 
anisotropy. In particular, they, identified five metastable and dynami-
cally stable candidates with 𝐾1 > 1.0 MJ/m3, 𝐽𝑠 > 1.0 T, and 𝑇𝑐 > 840 K. 
Liao et al. conducted a machine-learning-accelerated search across the 
Fe-Co-P ternary space, identifying 16 new structures below the convex 
hull, including five with 𝐽𝑠 > 1 T and promising anisotropy, with 
Fe7CoP4 emerging as the top candidate (𝐽𝑠 = 1.03 T, 𝐾1 = 0.83 MJ/m3) 
as a rare-earth-free permanent magnet [19].

We also acknowledge recent related works by Schmidt et al. [20] 
and Vishina et al. [21], which offer complementary machine-learning 
and experimental perspectives on the discovery of rare-earth-free mag-
netic materials. Schmidt et al. developed a crystal graph attention 
network (CGAT) capable of predicting thermodynamic stability (dis-
tance to convex hull) without requiring fully relaxed crystal structures. 
By combining prototype-based modeling with attention-based mes-
sage passing, their approach enables high-throughput discovery of 
stable compounds across millions of hypothetical compositions. Vishina 
et al. proposed a new class of rare-earth-free permanent magnets 
based on the Co3Mn2Ge compound, identified through high-throughput 
data mining and validated experimentally. Lastly, Horton et al. devel-
oped a framework that predicts the magnetic ground state of crystals 
(ferromagnetic, antiferromagnetic, or ferrimagnetic) and their associ-
ated magnetic moments using collinear spin-polarized DFT in a high-
throughput manner, achieving around 60% accuracy on experimental 
datasets [22].

In this work, we present a pipeline for the discovery of permanent 
magnets that generates ternary magnetic alloys and predicts their key 
hard magnetic properties, including easy axis anisotropy (𝐾1), magnetic 
transition temperature (𝑇C), and saturation magnetization (𝑀S). Our 
methodology involves three main steps. Firstly, regression ML models 
are trained to predict 𝑀S and 𝑇C, while a classification ML algorithm 
predicts whether a structure is likely to exhibit an easy magnetization 
axis. These are all based on structural features. The classifier serves 
as a screening tool to select materials that are likely to exhibit easy 
axis anisotropy as opposed to easy plane one. Secondly, new structures 
are generated by substituting Fe and Co at transition-metal (TM) sites 
and boron or nitrogen at non-TM sites within ternary alloys sourced 
from the AFLOW repository. Structural relaxation is performed using 
the M3GNet universal potential [23]. Finally, the trained ML mod-
els predict the key magnetic properties of these structures, and the 
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top candidates are then selected based on their magnetic properties 
and structural stability against decomposition. The properties of these 
candidates are subsequently evaluated via DFT.

In particular, we aim at developing rare-earth-free permanent mag-
nets, considering the limited availability and supply-chain vulnerabil-
ities of rare-earth resources. The choice of elements in our approach 
is deliberate: Fe is used for its role in providing high 𝑀S, Co con-
tributes significantly to the MCA, and elements such as nitrogen and 
carbon enhance the structural stability and may increase 𝑇C [10,24,
25]. Our multipronged strategy allows for the exploration of diverse 
compositions and helps to determine the optimal compositional ratios 
necessary to achieve the desired combination of magnetic proper-
ties and stability. This approach is critical for designing sustainable 
and high-performance permanent magnets. The overall framework is 
illustrated in Fig.  1.

The key contributions of this paper are as follows: (1) the use 
of robust ML models to predict critical magnetic properties, enabling 
scalable screening of structures; (2) the application of M3GNet graph 
neural networks to accelerate structural relaxations, reducing compu-
tational demands compared to DFT; and (3) the rigorous validation of 
top-performing, structurally stable materials using DFT.

2. Methods

2.1. Dataset generation

The first stage of our materials discovery pipeline involves curating 
three separate datasets for training the ML models. These models are 
designed to predict (i) 𝑀S, (ii) 𝑇C, and (iii) the easy axis anisotropy. 
Magnetic moment data and corresponding structures for approximately 
150,000 compounds were downloaded using the Materials Project (MP) 
API. This data was used to train the magnetic moment regressor using 
the universal-graph deep-learning architecture M3GNet [23].

Although there are 𝑇C datasets that are generated using natural lan-
guage processing methods [26], their accuracy still could not achieve 
to those developed manually. Therefore, we began with the 𝑇C dataset 
manually compiled as used in Gilligan et al. [27], which consists of 
approximately 5400 compounds with compositions and corresponding 
𝑇C values. Since we aimed to train a 𝑇C model using structural infor-
mation, we obtained the structures for these compositions from the 
MP [7] and AFLOW [6] APIs. These databases often contain multiple 
structures for the same composition due to polymorphs or hypothetical 
structures analyzed for stability. For each composition, only the stable 
structures on the convex hull were retrieved, which refer to the crystal 
structures that are thermodynamically stable with respect to decom-
position into competing phases. These structures lie on the convex 
hull constructed with the formation energies of all known phases at 
a given composition. Only the lowest-energy structures that define this 
convex envelope are considered stable. Out of the 5400 compounds, 
approximately 1500 records met this requirement. We acknowledge 
that 𝑇C can differ across different polymorphs of the same composition. 
However, our 𝑇C dataset is experimentally derived and lacks explicit 
structural information. Therefore, to associate each composition with 
a physically meaningful structure, we retrieved only the lowest-energy 
phase on the convex hull from DFT-based databases. These structures 
are more likely to correspond to experimentally observed configura-
tions, whereas unstable polymorphs above the hull could introduce 
inaccuracies and ambiguity when linking to experimental 𝑇C values. In 
addition to the stability requirement we set, this limited availability of 
records arises also because the manually curated 𝑇C dataset primarily 
includes disordered alloys, while the MP and AFLOW repositories focus 
on ordered structures.

For the classifier predicting the presence of an easy axis in a 
structure, we utilized the magnetic materials database from Sakurai 
et al. [28], which includes structures and MCA values for 3826 com-
pounds. These mainly consist of TM elements, with Fe and Co as major 
constituents, due to their magnetic properties. This composition aligns 
with our study, as we primarily substitute Fe, Co, B, and 𝑁 in the newly 
generated structures.
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Fig. 1. Machine learning pipeline to discover new hard magnetic materials.
2.2. Training the machine learning models

M3GNet was used to train on the magnetic moment dataset com-
prising approximately 150,000 compounds. M3GNet is a graph-based 
deep-learning architecture, where the nodes represent the atoms and 
the edges the bonds of a crystal structure [23]. When trained on 
large datasets, graph-based networks outperform classical ML models 
that use simpler composition-based features [29,30]. The Adam op-
timizer [31] was used with an initial learning rate of 0.001, which 
decayed to 1% of its original value over 100 epochs using a cosine 
schedule. A batch size of 128 was used, with training completed in 750 
epochs. The loss function employed was mean squared error (MSE).

For the 𝑇C regressor and easy axis classifier, we utilized Matminer’s 
structural feature generators along with a random forest (RF) model 
[32]. Each structure was used to generate features, including: (i) AG-
NIFingerprints, which integrate the radial distribution function and a 
Gaussian window function [33]; (ii) OPSiteFingerprint, representing 
local structural order parameters computed from a site’s neighboring 
environment; and (iii) OrbitalFieldMatrix, which encodes the valence 
shell electron configurations of neighboring atoms. These combined 
features provided optimal performance on validation datasets for both 
the regressor and classifier. The RF models were implemented using 
scikit-learn [34] with 200 trees in the forest and a maximum depth of 
20 for each tree.

2.3. Structure generation and relaxations

We began by downloading all ternary compounds composed of 
two TM elements and one non-TM element from the carbon group, 
boron group, pnictogens, or chalcogens using the AFLOW API [6]. This 
process yielded approximately 1.5 million structures, including experi-
mentally derived and hypothetical structures. These were modified by 
substituting Fe and Co at the TM sites and B or 𝑁 at the non-TM sites. 
For a generic composition TM1

𝑥-TM2
𝑦-nonTM𝑧, the following structures 

were generated: Fe𝑥-Co𝑦-N𝑧, Co𝑥-Fe𝑦-N𝑧, Fe𝑥-Co𝑦-B𝑧 and Co𝑥-Fe𝑦-B𝑧. 
Duplicate structures were removed using Pymatgen’s StructureMatcher 
algorithm [35], resulting in a dataset of approximately 48,000 unique 
structures. We note that this approach considers only one represen-
tative atomic configuration per stoichiometry. While multiple spatial 
arrangements may exist for a given composition, we have selected a 
single ordered configuration for computational efficiency. We believe 
this is a reasonable compromise that enables screening a broad design 
space, while recognizing that more exhaustive configurational sampling 
could be pursued in future work.

Before inference, these structures were relaxed using the M3GNet 
Interatomic Potential (IAP) graph network, trained on 187,000 en-
ergies, 16,000,000 forces, and 1,600,000 stresses from the Materials 
3 
Project [23]. M3GNet was chosen for its efficiency in predicting struc-
tural properties, making it ideal for relaxing a dataset large enough to 
be impractical for DFT-based methods.

M3GNet extends CGCNN [36] graph-based representation by incor-
porating explicit three-body interactions, thereby capturing the multi-
body correlation crucial for an accurate evaluation of the potential-
energy surface and enabling both structural relaxations and molecular 
dynamics across diverse compositions. The focus on multi-body interac-
tions and energy-force consistency grants M3GNet a high transferability 
and the flexibility to be applied to large-scale materials discovery. 
Adding to that, Xia et al. [17] introduced an adaptive genetic algorithm 
that refines its machine learning potential by iterating between candi-
date structure generation and targeted DFT validations, systematically 
improving accuracy when exploring high-anisotropy compounds. In 
our study, we do not utilize such an adaptive framework; instead, 
our approach leverages a large array of structural prototypes from the 
AFLOW repository to generate candidate structures, thus providing a 
broad sampling of compositions without iterative retraining.

2.4. DFT calculations

DFT calculations were performed using the projector augmented 
wave (PAW) method as implemented in the Vienna Ab-initio Simu-
lation Package (VASP) [37]. The exchange–correlation functional was 
described using the generalized gradient approximation (GGA) in the 
Perdew, Burke, and Ernzerhof (PBE) form [38]. A kinetic-energy cutoff 
of 600 eV and the tetrahedron integration method [39] were employed. 
The convergence criteria were set to 10−7 eV for the total energy 
and 10−3 eV/Åfor the forces during ionic relaxation, with structural 
optimizations performed for both the cell volume and atomic positions.

The MCA was calculated using the magnetic force theorem [40–42]. 
This involved two steps: (i) a scalar-relativistic collinear charge self-
consistent calculation to derive the charge density, followed by (ii) a 
non-self-consistent calculation, including spin–orbit coupling (SOC), to 
compute the total band energies for magnetization aligned parallel, 
𝐸band,∥ and perpendicular, 𝐸band,⟂ to the crystal plane. The MCA was 
then determined as 𝐸MCA = 𝐸band,∥ −𝐸band,⟂. This approach aligns well 
with prior studies on ferromagnetic systems [16,43].

The Monkhorst–Pack (MP) scheme was used to generate the 𝐤-
point grid, ensuring convergence of the MCA energy to 10−6 eV/atom. 
Although MCA energies are small (typically on the order of meV), this 
approach reliably identifies anisotropic compounds.

At the lowest order the energy expression for the anisotropy of 
a magnet of volume 𝑉  is determined by the 𝐾1 anisotropy constant, 
through

𝐸(𝜃)∕𝑉 = 𝐾1 sin
2 𝜃 .

If 𝐾1 > 0, then the energy has minima at 𝜃 = 0 and 𝜃 = 𝜋, 
which corresponds to easy-axis anisotropy. In the case of negative 
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𝐾1, the energy minimum occurs at 𝜃 = 𝜋∕2, where we have easy-
plane anisotropy. However, the situation is different for low-symmetry 
crystal systems such as the orthorhombic, monoclinic and triclinic. In 
such cases, the anisotropy energy density up to second order can be 
expressed [44] as
𝐸(𝜃, 𝜙)∕𝑉 = 𝐾1 sin

2 𝜃 +𝐾 ′
1 sin

2 𝜃 cos(2𝜙) ,

where 𝐾1 and 𝐾 ′
1 can be calculated from the energy differences between 

two interplanar and intraplanar magnetization directions [45].
In this study, 𝐾1 was calculated using the first expression for all 

the 43 compounds as part of the primary screening. Due to computa-
tional limitations, the in-plane direction was restricted to [100] only. 
However, additional energy calculations have been performed along 
the [010] direction for a few most promising prototypes. Based on 
these results, the top five candidates have been selected. Our results are 
presented in Table  1. For the three lower-symmetry structures, both 𝐾1
and 𝐾 ′

1 are reported.

3. Results and discussions

3.1. Models predicting magnetic properties

We trained three separate machine learning models to predict 
key hard magnetic properties: 𝑀S, 𝑇C and easy axis anisotropy. The 
M3GNet graph network was trained on magnetic-moment data for 
150,000 structures downloaded from the Materials Project. This dataset 
includes magnetic moments for materials in ferromagnetic, antiferro-
magnetic, ferrimagnetic and non-magnetic configurations. The model 
was trained for 750 epochs, with results for the training and validation 
datasets, as well as prediction plots for the test sets, shown in Fig.  2.

As shown in Fig.  2(a), the validation mean absolute error (MAE) 
of the magnetization model stabilizes around 0.15 𝜇B/Å3. While this 
may appear large in absolute terms, it is important to recognize that 
the magnetization distribution is highly inhomogeneous, with most 
values clustered around zero and a long tail extending up to ap-
proximately 0.24 𝜇B/Å3. As a reference, the magnetic polarization of 
elemental Fe and Co is estimated at 0.225 𝜇B/Å3 and 0.146 𝜇B/Å3, 
respectively, providing a useful context for interpreting the predicted 
values. For comparison, a trivial mean predictor achieves a MAE of 
0.0201 𝜇B/Å3, highlighting the challenge posed by this data distribu-
tion. Although restricting the training set to high-moment materials 
could reduce the prediction error, such an approach would bias the 
model toward overestimating magnetization. Our goal, instead, is to 
train a model that generalizes well across the full spectrum of magnetic 
behaviors. The so-constructed model achieves a 𝑅2 score of 0.64 [see 
Fig.  2(b)], demonstrating its capability to capture meaningful trends 
and to distinguish between low- and high-moment candidates.

We also note that a related machine-learning model developed by 
Liao et al. [46] predicted total magnetic moment per unit cell in Fe-
Co-N compounds with a root-mean-square error (RMSE) of 2.8 𝜇B/cell. 
To compare this to our magnetization model, we converted their RMSE 
into an equivalent per-volume MAE using an average unit cell volume 
of 120 Å3 for Fe-Co-N structures. This yields an estimated MAE of 
approximately 0.018 𝜇B/Å3. While our reported MAE of 0.15 𝜇B/Å3 is 
higher, the difference is expected due to our model’s broader chemical 
scope, which includes both magnetic and non-magnetic materials.

Examining the prediction plot in Fig.  2(b), the graph networks 
clearly perform better when trained on properties such as forma-
tion energy, bulk modulus, or band gap [47], compared to the mag-
netic moment. Magnetic moments are highly sensitive to the choice 
of initial spin configurations, the presence of multiple competing mag-
netic states, and the limitations of standard exchange–correlation func-
tionals in capturing electronic correlation effects. Furthermore, high-
throughput DFT workflows often lack robust protocols for systemati-
cally determining the magnetic ground state [22], a feature that can 
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lead to inconsistencies in the reported magnetic data. These factors con-
tribute to greater uncertainty in the training data, and ultimately, lower 
model performance for the magnetic-moment prediction. Nonetheless, 
an 𝑅2 of approximately 0.64 suggests that the model captures meaning-
ful trends in the data and can help distinguish materials with relatively 
high magnetic moments. It is also worth noting that the machine 
learning models in this study are used primarily as a screening tool, 
with the final magnetic properties of selected candidates validated 
through direct DFT calculations.

Fig.  3 presents the parity plot for the 𝑇C model computed over the 
test dataset. The model demonstrates the ability to predict 𝑇C across its 
entire range, achieving a mean absolute error (MAE) of 75.6 K, which 
is comparable to the value of 57 K reported by Sanvito et al. [48]. Often 
𝑇C models underperform, particularly at high temperatures, due to the 
lack of training data in this range [48,49]. This limitation is common 
when models are trained using only compositional features. We further 
evaluated the model’s performance in the high-𝑇C range and found that 
the MAE for compounds with 𝑇C > 300 K is approximately 130 K. While 
this is higher than the overall MAE, it a result that reflects the greater 
spread of values at high temperatures. Despite this, the model still 
captures meaningful trends and remains useful for screening materials 
with high 𝑇C.

Among the three models, predicting the MCA via regression proved 
to be the most challenging task. The difficulty stems from the lack 
of high-quality datasets, a fact that is linked to the computational 
complexity of calculating MCA values using DFT. As discussed in 
Section 2.1, we used the magnetic materials database from Ref. [17], 
which contains MCA values for approximately 3826 compounds along 
with their structures. We acknowledge that magnetocrystalline
anisotropy (MCA) is a particularly difficult property to model using 
machine learning. This challenge stems not only from the inherent 
complexity of the MCA itself, which originates from subtle spin–orbit 
coupling effects, but also from the limitations of standard feature 
representations. The feature sets employed in this study, including 
composition-based fingerprints, local structural order parameters, and 
graph-based embeddings, do not explicitly capture critical physics such 
as crystal symmetry breaking, heavy-element orbital contributions, or 
spin–orbit–induced anisotropy. These limitations significantly hinder 
the model’s ability to generalize across diverse material classes. Al-
though the MCA data from Sakurai et al. [28] are of generally high 
quality and benchmarked against experimental values, the regression 
performance was ultimately constrained by descriptor sufficiency and 
model expressiveness. This suggests that future progress in MCA pre-
diction will require incorporating symmetry and SOC aware descriptors 
tailored to the anisotropy problem, a direction we plan to explore in 
follow-up work.

In order to address these issues, we reformulated the problem as a 
classification task. Materials with negative MCA values were classified 
as easy plane and labeled as 0, while those with positive MCA were 
classified as easy axis and labeled as 1.

Fig.  4 shows the confusion matrix for the classifier. The model’s 
performance, measured by the overall accuracy, was 0.66 on the test 
dataset. In a similar line of work, Xie et al. [50] developed an MCA 
classifier for 2D materials only for structures that are derived from 
changing the chemical composition of the ferromagnetic semiconductor 
Cr2Ge2Te6, and achieved an accuracy of approximately 0.77. Given the 
diverse composition of our dataset, our model demonstrates sufficient 
predictive capabilities. As such, it serves as an effective screening 
tool to identify materials with a high likelihood of exhibiting easy 
axis anisotropy, providing a straightforward yet powerful filter for 
prioritizing candidates for further investigation.

It is important to note that all magnetocrystalline anisotropy (MCA) 
values reported in this study, both from DFT and ML, correspond to 
calculations performed at 0 K. No explicit temperature corrections 
were applied to the ML training data or the DFT-validated struc-
tures. As such, the reported 𝐾  values describe a ground-state property 
1
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Fig. 2. Machine learning model used for magnetic moment prediction task: (a) Mean absolute error (MAE) of the magnetic moment per unit volume against the number of epochs, 
computed over the training and validation sets; (b) parity plots of the magnetic moment computed over the test dataset.
Fig. 3. Parity plot of the machine learning model for the 𝑇C computed over the test 
dataset. Mean absolute error (MAE) and 𝑅2 are provided in the legend.

and may differ from those measured experimentally at finite tem-
peratures. This limitation is inherent high-throughput DFT datasets 
incorporating MCA and is now acknowledged here for clarity. Incor-
porating temperature-dependent effects remains an important direction 
for future work.

3.2. M3GNet relaxation of new structures

When new structures are generated by substituting Fe, Co, B, and 𝑁
into those obtained from AFLOW, both the atomic positions and lattice 
constants require optimization. DFT is the standard method for lat-
tice relaxations; however, it is computationally demanding. Given the 
approximately 10,000 unique structures generated in this study, per-
forming DFT relaxations on all of them is a large resource-consuming 
numerical task. In contrast, machine-learned interatomic potentials 
(IAPs) have demonstrated significant precision as surrogate models 
for property predictions, structural relaxations, and other tasks [23]. 
5 
Fig. 4. Confusion matrix for the easy axis classifier model. The model predicts whether 
a material is likely to have easy plane or easy axis anisotropy, but does not provide 
an estimate for the magnetocrystalline anisotropy energy.

M3GNet, in particular, has been shown to relax arbitrary crystal struc-
tures at scale, making it an ideal choice for our materials discovery 
pipeline.

The M3GNet IAP was applied to these new structures, for which 
the final relaxed geometries were not known a priori. Fig.  5(a) and 
Fig.  6(a) show the cumulative distributions of volumes and energies 
of the crystal structures before and after M3GNet relaxation. The hor-
izontal dashed lines mark the 50th, 80th, and 95th percentiles of the 
distributions (from bottom to top, respectively). Overall, the relaxation 
process leads to significant changes in both volume and energy, as 
expected. From the two figures, it is evident that more than 50% 
of the structures experienced volume changes greater than 35% and 
energy reductions exceeding 23%. Based on the energy lowering during 
relaxation, it is safe to state that M3GNet IAP was effective in relaxing 
the hypothetical crystals in a high-throughput manner. It is also worth 
mentioning that, while this served as an initial relaxation step, we 
performed further rigorous crystal optimizations for the top candidates 
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Fig. 5. Analysis of the M3GNet-driven crystal-structure relaxation: (a) Cumulative distribution of structure volumes before and after M3GNet relaxation; (b) differences between 
volumes before and after relaxation, relative to the initial volumes. Volumes refer to the total unit cell volumes of the structures before and after M3GNet relaxation.
Fig. 6. Analysis of the M3GNet-driven crystal-structure relaxation: (a) Cumulative distribution of energies before and after M3GNet relaxation; (b) differences between energies 
before and after relaxation, relative to the initial energies. Energies represented are per unit cell.
during our DFT validation. To evaluate the accuracy of the M3GNet-
relaxed geometries, we compared them to those obtained after full DFT 
optimization. As shown in Fig.  7, DFT refinement results in slightly 
smaller volumes, indicating that M3GNet provides a reasonable initial 
approximation that is further fine-tuned by DFT. The close clustering of 
points around the parity line confirms the overall consistency between 
the two relaxation methods. Lastly, we wish to remark that the M3GNet 
IAP relaxation does not provide information about thermodynamical 
stability. This requires further analyses, such as the prediction of the 
formation energy and the evaluation of the material’s convex hull 
diagram. These aspects will be discussed in the next section.

3.3. Inference on the generated structures

The first step in assessing the thermodynamical stability of the 
generated structures involves predicting their formation energy. This 
is defined as the energy of the compound relative to the energies 
of its constituent elements in their lowest energy structure. A nega-
tive (positive) formation energy indicates that the compound is stable 
(unstable) against decomposition into its associated elemental phases. 
The formation energies of the hypothetical crystals generated in this 
6 
study were predicted using the M3GNet graph network, which was 
trained on the Materials Project dataset with prediction errors below 
30 meV/atom [47]. The distribution of formation energies is shown in 
Fig.  8, where it emerges that more than half of the structures are stable 
against elemental decomposition.

A more stringent stability assessment involves conducting a convex 
hull analysis, which compares the formation energy of a given com-
pound to those of all known competing phases with the same composi-
tion. In particular, the analysis identifies the three nearest phases that 
form the vertices of the Gibbs triangle enclosing the compound’s com-
position. PyMatGen [35] was used to perform this comparison against 
known structures in the Materials Project database. The energy above 
the hull is defined as the energy difference between the formation en-
ergy of a compound and the energy of the lowest-energy combination of 
competing phases at the same composition (most favorable decomposi-
tion). This value is denoted as 𝐸hull and serves as a key thermodynamic 
stability metric. A compound with 𝐸hull = 0 lies exactly on the convex 
hull and is predicted to be thermodynamically stable at zero tempera-
ture. Positive values of 𝐸hull indicate metastability, with larger values 
implying a greater driving force toward decomposition. Compounds 
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Fig. 7. Parity plot comparing the relaxed volumes obtained from M3GNet and full 
DFT optimization for the top candidate structures. The dashed line indicates perfect 
agreement.

Fig. 8. Formation energy distribution predicted by M3GNet for the generated struc-
tures.

with 𝐸hull less than 50–100 meV/atom are often regarded as potentially 
synthesizable, particularly under non-equilibrium synthesis conditions.

The results of such convex hull analyses are illustrated in Figs.  9(a)
and 9(b) for the FeCoB- and FeCoN-type hypothetical structures, respec-
tively. Although none of the hypothetical structures investigated here 
is below the tie plane of the convex hull, many structures lie close, with 
inverse hull energies smaller than 100 meV/atom. As a general guide-
line, materials with inverse hull energies below 100–300 meV/atom 
may be considered metastable [49]. Metastable structures can often be 
synthesized in experimentally by using non-equilibrium methods such 
as melt-spinning or ball milling [51].

The next stage in the materials discovery workflow uses ML models 
to predict key magnetic properties, namely 𝑀S, 𝑇C and easy axis MCA. 
Fig.  10 reports 𝐸hull against 𝑀S for the new structures, which satisfy 
our ML easy axis MCA screening, namely those structures that are 
likely to be easy axis anisotropic. Our goal is to identify new hard 
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magnetic materials with large MCA, high 𝑀S and high 𝑇C. The stability 
criterion dictates that the formation energy of a compound must lie 
below or close to the convex hull. Therefore, we selected magnets with 
𝐸hull values less than 100 meV and 𝑀S values greater than 1.34 T. 
This essentially corresponds to select potentially metastable structures 
with attractive magnetic performance. In addition, compounds with 𝑇C
above 600 K were filtered, as 600 K sets the boundary of magnets 
useful for every-day consumer applications. These criteria yielded 43 
promising compounds, which were moved to further DFT validation.

3.4. Ab initio validation of the predicted structures

We now present our DFT results for the 43 compounds resulting 
from the ML screening. These comprise 37 FeCoB-type and 6 FeCoN-
type structures. The calculated 𝜇0𝑀S and 𝐾1 values are shown in Fig. 
11. Among these, 26 compounds exhibit 𝜇0𝑀s > 1 𝑇  (highlighted by the 
red-shaded area), while 18 have 𝐾1 > 0 (blue-shaded area), indicating 
easy axis anisotropy. The agreement between the ML-predicted 𝜇0𝑀S
values and the DFT calculations is over 60%, slightly higher than the 
agreement obtained for 𝐾1, which is at approximately 44%. Compounds 
meeting both criteria (𝜇0𝑀s > 1 𝑇  and 𝐾1 > 0) are considered potential 
candidates as hard magnets. There are 13 of them, as indicated by the 
overlap of the red and blue shaded areas in Fig.  11. These compounds 
clustered into 2–3 groups, with the largest group exhibiting high 𝜇0𝑀S
values and predominantly low 𝐾1 values, along with a few moderate 
and 1–2 high 𝐾1 values.

Although 𝐾1 and 𝜇0𝑀S provide valuable insights into a material’s 
suitability as a permanent magnet, technologically relevant properties 
such as the maximum energy product, (𝐵𝐻)max, and the anisotropy 
field, 𝐻a, are more relevant. These can be calculated using 𝐾1 and 𝜇0𝑀𝑠
as follows

(𝐵𝐻)max =
(𝜇0𝑀s)2

4𝜇0
, 𝐻a =

2𝐾1
𝜇0𝑀s

,

where (𝐵𝐻)max corresponds to the highest theoretical maximum, disre-
garding possible non-ideal hysteresis loop shapes.

In Fig.  12, we present (𝐵𝐻)max for all the compounds and 𝐻a
for most of them, excluding those with extremely small 𝐾1 or 𝜇0𝑀S, 
resulting in a disproportionately large 𝐻a. Compounds with (𝐵𝐻)max >
200 kJ/m3 and 𝐻a > 1 𝑇  are highlighted in the shaded regions. The 
computed (𝐵𝐻)max range in the 200–700 kJ/m3 interval for more than 
20 compounds, values comparable to commercially available hard-
magnets, like Nd2Fe14B (516 kJ/m3) and SmCo5 (219 kJ/m3) [52]. 
Note, however, that our calculations overestimate (𝐵𝐻)max (possibly 
by about 10%), since bulk magnetic materials typically have hysteresis 
loop that deviate from an ideal shape, due to microstructuring, grain 
boundaries, etc. In contrast, the 𝐻a ranges from −4 T to 4 T, with at 
least 10 compounds exhibiting 𝐻a > 1 T, highlighting their potential 
for easy axis anisotropy.

Another important metric for classifying magnets as hard, semi-
hard, or soft is the hardness parameter, 𝜅, which is calculated as

𝜅 =

√

𝐾1

𝜇0𝑀2
s
.

A magnet is hard if 𝜅 > 1. Our calculations identified 5–6 compounds 
with 𝜅 ≈ 1, indicating their potential for hard magnet applications.

The top five candidates were selected based on the criteria 𝜇0𝑀s > 1
𝑇  and 𝐾1 > 0. Key magnetic properties, including 𝐾1, 𝜇0𝑀S, (𝐵𝐻)max, 
𝜅, as well as the convex hull energy, 𝐸hull, and the formation energy, 
𝐸form, are listed in Table  1, together with their corresponding crystal 
space group symmetries, as shown in Fig.  13. All compounds are 
stable against decomposition into their constituent elements, as 𝐸form
is negative for all of them. Among the listed compounds, Fe6CoB2
exhibits the highest 𝐾1, 1.763 MJ/m3, combined with a substantial 
𝜇0𝑀S of 1.736 T, leading to a high (𝐵𝐻)max, namely 600.175 kJ/m3. 
This compound also shows a relatively low energy above the convex 
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Fig. 9. Convex hull analyses for the (a) FeCoB and (b) FeCoN ternary compounds investigated in this study.
Table 1
DFT-calculated formation energies and intrinsic magnetic properties of the top permanent-magnet candidates. The structures are shown in Fig.  13. Estimates of 𝑇C and 𝐸hull are 
provided with the ML model.
 Compound  Crystal 

symmetry
𝐸hull
(meV/atom)

𝐸form
(meV/atom)

𝐾1(𝐾 ′
1)

(MJ/m3)
𝐵𝐻max
(kJ/m3)

𝜇0𝑀S (T) 𝜇B/fu 𝜅 𝑇C (K)  

 FeCo5B Tetragonal 68.521 −170.251 1.001 (–) 376.249 1.374 8.279 0.816 785  
 Fe10CoB3 Trigonal 96.553 −71.708 0.559 (–) 633.376 1.783 21.029 0.470 681  
 Fe6CoB2 Monoclinic 30.431 −215.781 1.763 (0.608) 600.175 1.736 12.783 0.857 624  
 Fe4CoB Orthorhombic 78.296 −154.807 0.598 (0.383) 688.377 1.860 10.069 0.466 605  
 Fe2Co6N Monoclinic 90.031 −38.248 0.223 (−0.036) 507.428 1.596 12.594 0.332 666  
hull, 𝐸hull = 30.4 meV/atom, indicating the possibility of metastabilty. 
The second notable candidate is FeCo5B, with 𝐾1 = 1.001 MJ/m3, 
(𝐵𝐻)max = 376.248 kJ/m3, and 𝐸hull = 68.5 meV/atom. In the case of 
Fe CoB , a moderate 𝐾  of 0.559 MJ/m3 is combined with a high 
10 3 1
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(𝐵𝐻)max of 633.376 kJ/m3 and 𝐸hull = 96.5 meV/atom. A similar 
situation is observed for Fe4CoB, which combines a moderate 𝐾1 of 
0.598 MJ/m3 with the highest (𝐵𝐻)max of 688.377 kJ/m3 and 𝜇0𝑀S of 
1.860 T. The only nitride-based compound in the list is Fe Co N, which 
2 6
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Fig. 10. Distribution of potential hard-magnet candidates. The plot presents the 
distribution of compounds against their energy above the convex hull, 𝐸hull, and 
saturation magnetization, 𝑀S. The top candidates according to their thermodynamic 
stability, saturation magnetization and with a Curie temperature ≥ 600 K are colored 
in yellow (borides) and pink (nitrides) in the bottom-right quadrant. These structure, 
43 in total, were further analyzed by density functional theory.

Fig. 11. The density functional theory-calculated anisotropy constant, 𝐾1, and satura-
tion magnetization 𝜇0𝑀S are presented for all compounds. Positive (negative) values 
of 𝐾1 indicate an easy axis (easy plane) preference for the magnetization. The blue-
shaded area highlights compounds with easy axis anisotropy, while the red-shaded area 
indicates compounds with 𝜇0𝑀S greater than 1 T.

shows a substantial (𝐵𝐻)max of 507.428 kJ/m3 and 𝜇0𝑀S of 1.596 T, 
although 𝐾1 = 0.223 MJ/m3 is relatively low compared to the other 
four compounds.

In this context, it is worth mentioning that the orbital magnetic 
moments of these compounds is primarily determined by the Co and 
Fe atoms. The magnitude for Co (0.03–0.1 𝜇B) is slightly larger than 
that for Fe (0.009–0.063 𝜇B). The difference in the total orbital moment 
between the two magnetization directions is related to the MCA, which 
is consistent with the perturbative expression of the MCA energy as 
shown by Bruno [53].

In Xia et al. [17], several Fe-Co-B compounds were reported dis-
playing strong intrinsic magnetic properties. Fe3CoB2 stands out with 
𝐾1 = 1.34 MJ/m3, 𝐽𝑠 = 1.40 T, and a low 𝐸hull = 22.8 meV/atom, 
a compound that was also experimentally synthesized. Based on the 
space group information (Cmmm) provided by Xia et al. [17], we 
9 
Fig. 12. Calculated maximum theoretical energy product, (𝐵𝐻)max (upper panel) and 
anisotropy field, 𝐻a (lower panel) for all the screened compounds. The shaded regions 
highlight compounds with (𝐵𝐻)max > 200 kJ/m3 and 𝐻a > 1 T.

confirm that the Fe3CoB2 compound is indeed present in our generated 
database. Its computed properties are: 𝜇0𝑀𝑆 = 0.97 T, and 𝑇𝐶 = 508 
K, with an energy above hull (𝐸hull) of 0.29 eV/atom. Despite having 
respectable magnetic performance, this compound did not pass our 
high-throughput filtering criteria, which included thresholds of 𝑇𝐶 >
600 K, 𝜇0𝑀𝑆 > 1.33 T, and 𝐸hull < 0.1 eV/atom. Therefore, it was 
not selected for DFT validation in the final round. We note that al-
though the compound appears in both studies under the same nominal 
composition, differences in the specific Wyckoff site occupations and 
structural relaxations may lead to variations in the predicted properties.

Other high-anisotropy compounds, such as certain Fe2CoB2 poly-
morphs, exhibit 𝐾1 values approaching 1.96 MJ/m3 but with higher 
𝐸hull values exceeding 90 meV/atom. One of our prime candidates, 
monoclinic Fe6CoB2, delivers 𝐾1 = 1.76MJm−3, 𝜇0𝑀𝑠 = 1.74T and 
𝐸hull = 30.4meVatom−1. Although the two compounds are crystallo-
graphically distinct, their similar compositions yield comparable en-
ergetics and magnetic performance, lending confidence to the predic-
tions. In addition, the fact that this compound was experimentally 
realized while having 𝐸hull = 22.8 meV/atom is promising, as Fe6CoB2, 
shows a comparable 𝐸hull of 30.4 meV/atom, indicating that it may also 
be experimentally accessible.

Our tetragonal FeCo5B and orthorhombic Fe4CoB can be compared 
with the well-documented tetragonal (Fe1−𝑥Co𝑥)2B series. For compo-
sition at 𝑥 ≈ 0.3 Edström et al. [11] reported 𝐾1 = 0.42-0.63MJm−3

and 𝑇𝐶 ≈ 800-820K, while our prediction range for these compounds is 
𝐾1 = 0.60-1.00MJm−3 (see Table  1), hence corroborating the ML-DFT 
pipeline.

Nitrides hard-magnet remain scarce. The reference thin-film phase 
𝛼′′-Fe16N2 reaches up 𝐾𝑢 ≈ 0.6 MJ m−3 [54], whereas theory yields 
𝐾𝑢 = 3.2 MJ m−3 for Fe12Co4N2 [55]. We find that monoclinic Fe2CoN6
has 𝐾1 = 0.22 MJ m−3 and 𝜇0𝑀𝑠 = 1.60 T, values consistent with 
these predictions. In addition, existing Fe-Co-N sputtered films are 
magnetically soft in spite of their high 𝑀𝑠 [56], a fact that aligns with 
our low 𝐾1 prediction for these compounds.

Thus, taken all together, these comparisons show that the present 
workflow (i) faithfully reproduces the intrinsic properties of experimen-
tally established magnets in the Fe-Co-B and Fe-Co-N systems and (ii) 
uncovers several genuinely new, metastable boride and nitride phases 
that are well within reach of modern rapid-quenching or thin-film 
synthesis techniques.

For reproducibility, the CIF files of the top candidate structures have 
been included as supplementary materials. These provide full crystal-
lographic information, including lattice parameters, atomic positions, 
and species ordering, to facilitate verification and further analysis.
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Fig. 13. Crystal structure diagrams (primitive unit cell) of the most promising hard magnets with the associated space groups (SG). Their computed magnetic properties are listed 
in Table  1. Fe, Co, B ad 𝑁 atoms are represented by gold, blue, green and gray spheres respectively.
4. Conclusions

This study presents a robust high-throughput framework combining 
machine learning (ML) and density functional theory (DFT) to stream-
line the discovery of high-performance hard magnetic materials. By 
leveraging advanced ML models, structural relaxation using M3GNet, 
and high-throughput DFT validation, this approach efficiently identi-
fies FeCo-based ternary alloys with exceptional magnetic properties, 
including uniaxial anisotropy, saturation magnetization, and Curie tem-
perature. For example, Fe6CoB2 demonstrates superior performance 
with a uniaxial anisotropy constant (𝐾1) of 1.763 MJ/m3, saturation 
magnetization (𝑀S) of 1.736 T, and Curie temperature (𝑇C) of 624 K. 
Similarly, FeCo5B exhibits 𝐾1 = 1.001 MJ/m3, 𝑀S = 1.374 T, and 𝑇C
= 785 K, while Fe4CoB achieves 𝐾1 = 0.598 MJ/m3, 𝑀S = 1.860 T, 
and 𝑇C = 605 K, making them strong candidates for high-performance 
magnetic applications. Note that all these are not on the convex hull, 
but they are sufficiently close to be considered metastable.

The integration of ML models for rapid screening and predictive 
accuracy underscores the potential of data-driven methodologies to 
overcome the limitations of traditional trial-and-error approaches to 
materials discovery. This study not only highlights the feasibility of 
accelerating materials discovery, but also provides a scalable and adapt-
able workflow for exploring other magnetic systems. Future efforts 
will focus on refining predictive models, expanding the dataset, and 
applying this pipeline to a broader range of material compositions.
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