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A B S T R A C T

Proximal remote sensing has the potential to provide critical information on vegetation biophysical factors that 
can predict land-atmosphere exchange of water and energy. Latent energy (LE) flux is traditionally estimated 
using process-based models which rely on vegetation parameters that change during the growing season. Data- 
driven models have the potential to address these issues by offering flexible predictor selection and more efficient 
utilization of the information in predictor sets. These models require careful choice of predictors to avoid 
redundancy and allow robust cross-validation. In this study we present a systematic and comprehensive evalu
ation of machine learning (ML) models to assess the capability of meteorological and proximal sensing data for 
predicting LE at a half-hourly temporal resolution across multiple growing seasons for an agricultural system. 
The results presented here demonstrate that a model using four environmental predictors in combination with 
two proximal sensing variables can capture 88 % of the variability in LE. ML models using only three predictors 
(one meteorological and two proximal remote sensing) captured 81 % of LE variability, offering the best trade-off 
between performance and complexity. An ML model utilizing only two predictors, one proximal remote sensing 
variable and downwelling radiation, captured 77 % of LE variability. These results demonstrate the power of 
proximal remote sensing and meteorological observations to estimate land-atmosphere water vapor exchange, 
providing a solution where more direct methods such as eddy covariance are not available and for evaluations of 
agronomic management and genotypic variations.

1. Introduction

Latent energy flux (LE) is a land surface process that plays a central 
role in the surface energy balance (Mallick et al., 2013; Anderson et al., 
2011; Mallick et al., 2016). The physiological processes that control LE 
link the terrestrial water, carbon, and energy budgets (Drewry et al., 
2010; Drewry et al., 2010; Mallick et al., 2013; Anderson et al., 2011; 
Mallick et al., 2016). LE is the energy flux equivalent of evapotranspi
ration (ET) and therefore defines crop water consumption in agricultural 
systems, making LE estimation essential for agricultural water man
agement broadly. Example applications of LE estimation in managed 
systems include irrigation system design (Brombacher et al., 2022; Dela 
Cruz et al., 2020; Arif et al., 2022), crop water requirement monitoring 
(Li et al., 2010; Zhang et al., 2023), climate change impact assessments 
on agriculture (Castellví and Snyder, 2010; Denich and Bradford, 2010; 

Gaur et al., 2022; Payero and Irmak, 2008) and characterizing genotypic 
and agronomic management variations in crop growth (Bai et al., 2024).

LE can be measured using direct methods such as field lysimeters that 
use changes in above-ground mass to estimate water use (Castellví and 
Snyder, 2010; Denich and Bradford, 2010; Payero and Irmak, 2008) and 
eddy covariance (EC) that uses high frequency observations of water 
vapor concentration and wind fluctuations to estimate net 
canopy-atmosphere exchange of latent energy (Harder et al., 2023; 
Baldocchi, 2020). Remote sensing (RS) techniques are widely used to 
estimate LE at larger scales, and at locations where more direct but less 
spatially extensive field methods such as EC are not available (Kustas 
and Norman, 1996; Mallick et al., 2007; Anderson et al., 2011). 
RS-based models rely on an understanding of the surface energy balance 
and utilize observations of variables related to vegetation structure or 
temperature to constrain the energy balance (Huang et al., 2019; Zhang 
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et al., 2023). Unlike reflectance measurements of vegetation in the 
visible through shortwave infrared (i.e. solar spectrum) which take 
several days to show signs of stress, remote sensing of LE and associated 
physiological changes offers the potential for earlier detection of 
ecosystem stress (Wang et al., 2019).

RS models have often relied on either vegetation indices to integrate 
observations of canopy development and phenology (Liu et al., 2022) 
and productivity (Dold et al., 2019), or land surface temperature (LST) 
to provide information on the physiological status of the vegetation 
(Bhattarai et al., 2019; Anderson et al., 2012). Vegetation index-based 
models derive ET based on crop coefficients as a function of spectral 
reflectance values. In contrast, LST-based models utilize thermal 
infrared remote sensing observations to calculate LST to close the energy 
balance (Chen et al., 2023; Chen and Liu, 2020). In both cases, RS-based 
models often rely on models that are developed around biophysical 
principles, with varying levels of sophistication. These models have 
demonstrated the utility of both reflectance-based vegetation indices 
and land surface temperature to accurately estimate the 
land-atmosphere exchange of water vapor. However, these models rely 
on accurate specification of parameter values that often change with 
crop growth stage and environmental conditions, providing challenges 
to utilizing these formulations in highly dynamic agricultural systems. 
Proximal remote sensing offers a solution by providing high-frequency, 
real-time data directly from the field (e.g., continuous NDVI and LST 
measurements at sub-hourly intervals). This allows for much more dy
namic and responsive modeling, as real-time measurements can capture 
rapid changes in crop physiology and environmental conditions that are 
missed by traditional satellite-based RS models (Yi et al., 2024). Another 
advantage of proximal remote sensing is the ability to estimate LE for a 
variety of treatments such as different cropping systems or crop geno
types within a narrow range of soil and weather conditions (Bai et al., 
2024). This approach could be a promising way to guide the improve
ment of water-related crop traits, such as water use efficiency, when 
coupled with machine learning (Ferguson et al., 2021).

Machine learning (ML) models offer a powerful new approach for 
directly modeling LE or physiological variables that control surface 
water flux (Abdullah et al., 2015; Amani and Shafizadeh-Moghadam, 
2023; Gaur and Drewry, 2024; Bai et al., 2021). The non-parametric 
nature of ML, flexibility in predictor selection, and robust predictive 
capabilities make it particularly compelling for predictions in earth 
sciences in general and hydrology and climate and agricultural sciences 
in particular (Cross and Drewry, 2024; Gaur and Drewry, 2024; Reich
stein et al., 2019; Vidyarthi and Jain, 2023; Vidyarthi and Jain, 2020; 
Zhao et al., 2019; Bai et al., 2021). Numerous studies have employed a 
range of meteorological datasets for LE estimation. Granata (2019)
applied multiple machine-learning algorithms with different combina
tions of meteorological predictors for LE prediction. Yamaç and 
Todorovic (2020) evaluated the performance of four scenarios involving 
different combinations of available meteorological variables for pre
dicting crop evapotranspiration using ML algorithms. Their findings 
indicated that the model incorporating the full set of meteorological 
predictors outperformed the other ML models. Bai et al. (2021)
emphasized the utility of multi-ensemble machine ML models in pre
dicting crop evapotranspiration across a wide range of environmental 
conditions. Their study showed that ML-based ensemble models out
performed conventional ensemble models in ET predictions. These 
studies that utilized machine learning for LE estimation have relied 
primarily on weather data, demonstrating the power of these methods in 
combination with widely available in-situ observations, but leaving 
open questions related to the value of information in remote sensing 
observations from proximal, airborne or orbital systems. Recent ad
vances in ML have largely focused on utilizing satellite-based RS ob
servations and ambient environmental variables (Jung et al., 2019) to 
estimate LE, but these approaches lack information on the rapid changes 
and fine-scale variability inherent in dynamic terrestrial ecosystems, 
where crop growth and environmental conditions can rapidly change 

(Amani and Shafizadeh-Moghadam, 2023). In contrast, proximal RS can 
address these shortcomings by providing high-frequency observations 
for a more accurate representation of land surface conditions. While ML 
models have shown remarkable predictive capabilities and are increas
ingly applied in water and energy flux estimation (Lucarini et al., 2024), 
understanding how different predictor combinations influence pre
dictions is often lacking, hindering parsimonious model selection. 
Interpretability tools, such as Shapley Additive Explanations (SHAP), 
provide techniques to uncover the contribution of each predictor vari
able, making it easier to understand how input variables interact to in
fluence the target predictions. This is especially important for 
understanding model outcomes across different crop phenological stages 
and environmental conditions (Hu et al., 2022; Baptista et al., 2022).

In this study we present a systematic evaluation of the use of weather 
and proximal remote sensing observations for the estimation of LE in an 
agricultural system. Eddy covariance observations of LE provide vali
dation data spanning two soybean growing seasons at a site outside of 
Ames, IA, USA. Proximal remotely sensed estimates of normalized dif
ference vegetation index and LST allow us to examine how high fre
quency (sub-hourly) information on canopy structure and 
environmental and physiological controls on surface temperature can be 
leveraged for LE estimation using a flexible deep learning neural 
network (DLNN). The DLNN is a multi-layer neural network that extracts 
higher-level features from input datasets through representation 
learning (LeCun et al., 2015). This study provides guidelines for pre
dictor combinations that provide near-optimal / parsimonious predic
tive performance, leveraging both widely available weather and remote 
sensing variables across a wide range of phenological and climatic 
variability. In addition, explainable machine learning is applied to un
derstand under what conditions across a growing season specific pre
dictors are required, mitigating many challenges associated with the 
interpretability and physical consistency of ML approaches for envi
ronmental prediction.

2. Methodology

In the sub-sections below we describe the SABR study site and array 
of flux and environmental / meteorological variables collected at the site 
that are utilized here. This is followed by a description of the two in-situ 
proximal remote sensing observations that, in combination with envi
ronmental variables, are evaluated as predictors in machine learning 
models of latent energy flux. Following this we describe our approach to 
systematically evaluate a wide range of ML models spanning one to six 
predictor variables, allowing us to identify the most synergistic and 
parsimonious sets of predictors, and particularly the value added by 
proximal remote sensing of biophysical variables related to vegetation 
phenology and physiological response to environment. We conclude this 
section with descriptions of our methods for model development and 
validation and the application of post-hoc ML interpretability methods.

2.1. SABR study site

The data used in this study was collected at the Iowa State University 
Sustainable Advanced Bioeconomy Research Farm (SABR) in Boone 
County, IA, near Ames (42.00◦N, 93.70◦W) (Bendorf et al., 2022). SABR 
features four independently monitored plots to assess the performance 
of soybean, corn, sorghum and miscanthus under identical climatolog
ical and soil conditions. Each plot contains an eddy covariance tower 
installed in the center of the plots to measure the exchange of mass and 
energy between each crop canopy and the atmosphere. The soil at the 
SABR site is primarily composed of Canisteo clay loam (59 %), with 
smaller proportions of Clarion loam (19.3 %) and Webster clay loam 
(18.1 %). A detailed description of the sensors and data protocols uti
lized at SABR can be found at: https://sabr.shinyapps.io/appSABR/.

Here we focus on data collected for the SABR soybean plots for the 
2021 and 2022 growing seasons. Relative to 2022, the 2021 growing 
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season had higher temperatures and reduced precipitation, particularly 
during the critical crop development phase that began in June (Cross 
and Drewry, 2024). The data used in this study was collected from each 
of the two study years between June 2 to September 30, providing 
approximately 5500 half-hourly observations.

2.1.1. Flux and environmental data
The environmental predictors utilized in this study were collected on 

the sampling tower in the SABR soybean fields in 2021 and 2022, co- 
located with the eddy covariance sampling system used to measure 
latent energy flux. These environmental predictors included air tem
perature (Ta, ◦C) and relative humidity collected with a Campbell Sci
entific HMP-155. Vapor pressure deficit (VPD, kPa) was computed from 
these variables using the Tetens equation (Campbell and Norman, 
2000). Photosynthetically active radiation (PAR, µmol/m2/s) was 
collected with a LI-190 quantum sensor (Licor Biosciences, Nebraska, 
USA). Wind speed (U, m/s) was collected with a 3D sonic anemometer 
(Gill WindMaster, Hampshire, UK). A Kipp & Zonen CNR4 net radiom
eter provided downwelling and upwelling shortwave and longwave ra
diation, and sensors measured soil temperature and soil heat flux 
(Hukseflux HFP01SC soil heat flux plates) to provide necessary 

information for surface energy budget closure.
All environmental variables were averaged to 30-minute intervals. 

Missing meteorological data was first filled using data from a nearby 
meteorological station at the Ames Municipal Airport as part of the 
standard processing methods applied to SABR data (Cross and Drewry, 
2024). Any remaining missing data points were filled using a linear 
interpolation from one of the neighboring SABR towers where the 
missing variables were available.

LE measurements were obtained from the eddy covariance instru
mentation on the soybean tower and averaged to 30-minute resolution. 
No gap-filling was applied to the LE observations, ensuring that model 
development and validation conducted in this study was performed 
using observations and not modeled estimates. Bowen ratio correction 
(Dugas et al., 1991) was applied to the LE data before its use in the 
model development and evaluation exercises presented here to ensure 
that energy balance closure was maintained for each observation period.

2.1.2. Proximal remote sensing data
In-situ proximal remote sensing instruments were deployed on the 

soybean EC tower throughout the study period to continuously monitor 
LST and the normalized difference vegetation index (NDVI) (Tucker, 

Fig. 1. Histograms and density plots of (a-d) environmental variables used as predictors, (e-f) proximal remote-sensing variables used as predictors, and (g) latent 
energy flux observations used for model development and validation. (h-i) LST plotted against Ta with data points colored according to the NDVI and LE values of 
each observation, respectively. All data was collected at the SABR soybean site during the 2021 and 2022 growing seasons.
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1979). These instruments provided high temporal (5-minute) resolution 
observations of these remote sensing variables, which were averaged to 
30-minute periods to coincide with the flux and environmental data. 
NDVI was collected using two-band radiometers (SRS sensors from 
METER Inc., WA, USA) affixed to each of the four towers. The sensors 
were positioned to view a homogeneous region of the canopy to the 
south of each tower. To reduce noise and variability, a 4-hour window 
around local solar noon was selected and averaged each day to produce 
a daily NDVI value. This was done as daily NDVI observations are suf
ficient to characterize variability in canopy development relevant to our 
modeling efforts here. LST measurements were collected using infrared 
thermometers (Apogee Instruments, Utah, USA) deployed on each 
tower, oriented to look down onto the land surface/canopy from an 
approximate height of 3–4 m above the surface.

Fig. 1 presents histograms and density plots for the environmental 
and proximal remote sensing predictors utilized in this study. PAR ex
hibits a fairly uniform distribution as observations were collected across 
each study day. VPD and U show a wide range of variability, with the 
majority of observations occurring during fairly low VPD and U condi
tions. A clear peak in the NDVI distribution (values greater than 0.7) 
shows that most observations throughout these two growing seasons 
were made when the soybean canopy was dense. Although Ta and LST 
both represent temperature observations, their distributions differ as 
LST is in part controlled by ambient temperature, but also by physio
logical controls and associated energy balance processes. Plotting LST as 
a function of Ta and coloring data points according to values of NDVI and 
LE (Figs. 1h and 1i, respectively) shows a high degree of correlation 
between the two variables, with a correlation coefficient of 0.75 across 
the two growing seasons. These temperature variables deviate from a 
strong linear correlation as Ta increases above 18 ◦C. As NDVI increases 
to its maximum values Ta increases as the growing season peaks, but LST 
demonstrates the impact of evaporative cooling to lower surface tem
peratures relative to maximum LST seen when the canopy is not closed 
(lower NDVI).

In general, all predictors (PAR, VPD, Ta, U, NDVI, LST) display a wide 
range of variability across these two growing seasons, providing a strong 
test of the ability of machine learning to accurately predict LE.

2.2. Machine learning model development for latent energy flux 
estimation

In this study we develop and apply a large set of deep learning neural 
networks to explore the ability of various predictor sets to accurately 
predict latent energy flux across growing seasons as crop phenology and 
ambient environment show dramatic variations. Fig. 2 presents a sche
matic of the methodology we apply here. Latent energy flux is often 
predicted using crop or biophysical models driven by weather data in 
combination with an understanding of the canopy state (Drewry et al., 
2010; Drewry et al., 2010; Le et al., 2012; Anderson et al., 2011; Mallick 
et al., 2016). Here we utilized six predictor variables spanning both 
meteorological (PAR, VPD, Ta, U) and proximal-remote sensing (NDVI, 
LST) to predict LE using DLNNs (Fig. 2a). We retain both Ta and LST as 
predictors in the models we develop here to evaluate the unique infor
mation each may have toward LE prediction, and the extent to which 
their combination provides value (i.e. through the difference in air and 
surface temperature) in LE prediction.

2.2.1. Categorization of ML models for LE predictions
Here we utilize meteorological and proximal-remote sensing pre

dictors for LE predictions as discussed in Section 2.2. We organize this 
large set of ML models into four categories (Fig. 2b) to allow us to 
examine the impact of proximal remote sensing information on model 
performance. Within each of these four categories, we further consider 
the models in terms of their complexity, defined here simply as the 
number of predictors used by each model. This provides a framework for 
understanding model parsimony, i.e. how predictive performance varies 
as a function of model complexity, and within each complexity level (i.e. 
for all models developed using the same number of predictor variables). 
This allows us to determine which predictor sets perform best and how 
proximal sensing information improves predictive performance for LE. 
Additionally, this approach can provide insights into the biophysical 
controls on LE and enhance understanding of the functioning of the 
cropping system. Overall, we develop and evaluate 64 ML models 
developed using unique sets of predictor variables to predict LE: 

Fig. 2. Schematic of the methodology used in this study, including (a) a diagram depicting the field observations used in this study, and (b) the variable combi
nations used to formulate the four primary model categories evaluated here for the prediction of LE (L̂E).
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• Category 1: ML models formulated using only meteorological pre
dictors using all possible combinations of meteorological predictors: 
PAR, VPD, Ta, and U. This includes the formulation of fifteen models 
in total: one-predictor models ([PAR], [VPD], [Ta], [U]); two- 
predictor models ([PAR, VPD], [PAR, Ta], [PAR, U], [VPD, Ta], 
[VPD, U], [Ta, U]); three-predictor models ([PAR, VPD, Ta], [PAR, 
VPD, U], [VPD, Ta, U], [PAR, Ta, U]); and a four-predictor model 
([PAR, VPD, Ta, U])

• Category 2: ML models formulated using meteorological predictors 
in combination with proximal sensing LST. In this category a total of 
sixteen models are formulated that include: one-predictor model 
([LST]); two-predictor models ([Ta, LST], [VPD, LST], [U, LST], 
[PAR, LST]); three-predictor models ([PAR, Ta, LST], [VPD, Ta, LST], 
[Ta, U, LST], [PAR, VPD, LST], [VPD, U, LST], [PAR, U, LST]); four- 
predictor models ([PAR, VPD, Ta, LST], [VPD, Ta, U, LST], [PAR, Ta, 
U, LST], [PAR, VPD, U, LST]); and a five-predictor model ([PAR, 
VPD, U, Ta, LST]).

• Category 3: ML models formulated using meteorological predictors 
in combination with proximal sensing NDVI. The developed models 
include sixteen models in total: one-predictor model ([NDVI]); two- 
predictor models ([PAR, NDVI], [VPD, NDVI], [Ta, NDVI], [U, 
NDVI]); three-predictor models ([PAR, VPD, NDVI], [PAR, Ta, 
NDVI], [Ta, U, NDVI], [VPD, Ta, NDVI], [PAR, U, NDVI], [VPD, U, 
NDVI]); four-predictor models ([PAR, VPD, Ta, NDVI], [VPD, Ta, U, 
NDVI], [PAR, Ta, U, NDVI], [PAR, VPD, U, NDVI]); and a five- 
predictor model ([PAR, VPD, U, Ta, NDVI]).

• Category 4: ML models formulated using meteorological predictors 
in combination with both proximal sensing variables. These predic
tor combinations resulted in the formulation of seventeen models: a 
two-predictor model ([LST, NDVI]); three-predictor models ([U, LST, 
NDVI], [PAR, LST, NDVI], [VPD, LST, NDVI], [Ta, LST, NDVI]); four- 
predictor models ([Ta, U, LST, NDVI], [PAR, U, LST, NDVI], [VPD, U, 
LST, NDVI], [PAR, VPD, LST, NDVI], [PAR, Ta, LST, NDVI], [PAR, U, 
LST, NDVI], [VPD, Ta, LST, NDVI]); five-predictor models ([VPD, Ta, 
U, LST, NDVI], [PAR, Ta, U, LST, NDVI], [PAR, VPD, U, LST, NDVI], 
[PAR, VPD, Ta, LST, NDVI]); and a six-predictor model ([PAR, VPD, 
U, Ta, LST, NDVI]).

2.2.2. Machine learning model training and evaluation
All ML models were robustly cross validated following the proced

ures of Cross and Drewry (2024) and Gaur and Drewry (2024). The 
cross-validation scheme used in this study involves iterative training and 
validation across 100 random splits of the data. Model training (cali
bration) is conducted by identifying the optimal set of hyperparameters 
based on these 100 random splits, each of which is used to train a 
separate model. Thus, this robust cross-validation framework effectively 
incorporates both the calibration (training) and validation of the ma
chine learning models. A detailed description of the cross validation 
procedure we used follows.

The data was randomly split into training (80 %) and validation 
(20 %) sets using an iterative procedure in which the dataset was 
randomly split and unique models developed for each of 100 data splits. 
All ML model development presented here was performed using the 
Python programming language. All predictors were normalized to have 
a zero mean and one standard deviation prior to model development. 
Hyperparameter tuning (HPT) using randomized search was performed 
on each randomly split dataset, resulting in 100 sets of best-performing 
hyperparameters. Here HPT was performed on three hyperparameters: 
(a) the number of hidden layers which was varied from 4 to 12; (b) the 
number of neurons which was allowed to take on one of the following 
values: 16, 32, 64, 128, 256, 518; and (c) the learning rate which was 
allowed to be one of the following values: 0.001, 0.0001, 0.0002, 
0.0003, 0.0004, 0.0005. A rectified linear unit (ReLU) was used for the 
activation function of the neural networks developed here.

Early stopping was performed to prevent model overfitting (Zhao 
et al., 2019). Early stopping evaluates the performance of the ML model 

on the validation set and terminates the training process when valida
tion loss improvement plateaus (Vilares Ferro et al., 2023; Zhao et al., 
2019). Here, the early stopping criteria was set to 50 epochs. Each ML 
model was individually trained on each random split of data and the 
final performance of the model was obtained by averaging the perfor
mance metrics for each data point on validation sets. The post model 
performance was evaluated using the coefficient of determination (R²), 
root mean square error (RMSE), mean absolute error (MAE) and Akaike 
information criterion (AIC).

2.3. Posthoc interpretability of ML predictions

While ML techniques are highly flexible modeling tools, they lack the 
interpretability of process-based models (Reichstein et al., 2022; 
Reichstein et al., 2019). Explainable machine learning is a set of tech
niques that provides insights into the value of predictor variables to be 
derived, illuminating aspects of model structure in what are often 
considered to be ‘black-box’ modeling approaches (Lundberg et al., 
2020; Lundberg and Lee, 2017; Zhi et al., 2024). Here we utilized the 
SHapley Additive exPlanations algorithm (Lundberg and Lee, 2017) to 
interpret the outcomes of DLNNs used for predicting LE. We used SHAP 
to understand how different input predictors affect the performance of 
the models developed here. SHAP values provide information about how 
an individual data point in a predictor contributes to the model pre
dictions in terms of local explanation (Lundberg et al., 2020). This can 
provide insights into the synergisms and redundancies inherent between 
predictors and can help to physically interpret model performance when 
evaluated against environmental or phenological conditions (Cross and 
Drewry, 2024). We use beeswarm plots to visualize instance-based local 
explanations in terms of magnitude, prevalence, and direction of the 
predictor’s effect on LE estimates. These plots show the distribution of 
individual continuous variables (predictors in our case), with each data 
point plotted separately. They offer deeper insights, especially when 
comparing or visualizing multiple variables. Further details about the 
SHAP algorithm can be found in Lundberg and Lee (2017) and Lundberg 
et al. (2020).

3. Results and discussion

3.1. Latent energy flux prediction with model complexity

The average performance of the ML models on the validation fraction 
across one hundred model iterations are presented in Fig. 3 as a function 
of model complexity (number of predictor variables used). The best sets 
of hyperparameters obtained from hyperparameter tuning over one 
hundred iterations fall within the following ranges: number of layers 
(3–10), number of neurons per layer (32–518), and learning rate 
(0.0001–0.001). Figures S1-S4 illustrate the distribution of these pa
rameters across all iterations for each model using box plots. The one- 
predictor models vary across a wide range of predictive performance 
with R2 values ranging from 0.05 for U to 0.56 for the PAR model 
(Tables 1–3). PAR is critical for LE predictions as it is a shortwave ra
diation variable associated with the primary source of energy absorbed 
by leaves during the day to drive photosynthesis and energy exchange.

The performance of the two-predictor models ranges from R2 = 0.26 
to R2 = 0.77 (Tables 1–4). Among the models driven solely by meteo
rological predictors [PAR, VPD] and [PAR, Ta] capture 61 % and 60 % of 
the variability in LE predictions (Table 1), respectively. Of the two- 
predictor models, the best performing combination includes down
welling PAR and NDVI [PAR, NDVI] (Table 3) which captures 77 % of 
the variability in LE over the two growing seasons examined here. This 
finding is consistent with those of Wang et al. (2021), Wu et al. (2020)
and Yebra et al. (2015) who found that NDVI adds critical information 
on seasonal phenological changes in vegetation that substantially im
proves LE predictions. The two-predictor model that combines down
welling PAR with proximal LST also performs quite well (R2 = 0.68) 
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(Table 2). This is likely the case as LST contains information about 
canopy phenology, as the land surface tends to cool as it transitions from 
bare soil to fully vegetated due to the effect of evaporative cooling from 
evapotranspiration (Feldman et al., 2023) It is notable that multiple 
two-predictor models are capable of capturing greater than 60 % of the 
variability in LE across multiple growing seasons.

The predictive performance of the three-predictor models ranges 
from R2 = 0.40 to R2 = 0.81 (Tables 1–4). Among these, the models 
incorporating a combination of environmental and remote sensing 
predictors provide the best performance compared to those driven solely 
by environmental predictors. Downwelling PAR in addition to the two 
remote sensing variables ([PAR, LST, NDVI]) produces a model that 
captures 81 % of the observed LE variability (R2 = 0.81, Table 4), as 
does [PAR, Ta, LST] (R2 = 0.81, Table 2). While the performance of these 
three-predictor models is notable, it is only slightly better than the best- 
performing two-predictor model, demonstrating the importance of 
knowledge of energy input into the system and vegetation structure (i.e. 

phenology).
The performance of the four-predictor models ranges from R2 = 0.60 

to R2 = 0.85 (Tables 1–4). Generally, the models incorporating both 
meteorological and remote sensing predictors demonstrate better pre
dictive performance than those that only use meteorological predictors. 
The five-predictor models have R2 validation performance values 

Fig. 3. Performance of ML models during validation. The shaded regions 
represent the range of R2 performance for all models with a specific number of 
predictors. Symbols within those shaded regions show the R2 performance of 
specific models with that number of predictors. Tables 1–4 provide statistical 
performance metrics for all models developed in this study.

Table 1 
Performance of ML models formulated using only meteorological predictors for 
LE estimation.

Predictors R2 MAE (W/m2) RMSE (W/m2) AIC

[PAR] 0.56 60 80.7 8.7
[VPD] 0.23 84.6 106.35 9.3
[Ta] 0.27 81.3 103.5 9.2
[U] 0.05 98.3 118.4 9.5
[PAR, VPD] 0.61 54.6 75.3 8.6
[PAR, Ta] 0.60 55.1 76.2 8.6
[PAR, U] 0.57 58.4 79.8 8.7
[VPD, Ta] 0.39 73.4 95 9.1
[VPD, U] 0.26 82.9 104.5 9.2
[Ta, U] 0.29 80.3 102.3 9.2
[PAR, VPD, Ta] 0.75 42.2 60.2 8.2
[PAR, VPD, U] 0.63 52.8 73.8 8.6
[VPD, Ta, U] 0.42 70.9 91.9 9.0
[PAR, Ta, U] 0.62 53.8 75.05 8.6
[PAR, VPD, Ta, U] 0.76 41.2 59.6 8.1

Table 2 
Performance of ML models formulated using meteorological predictors and 
proximal sensing LST for LE estimation.

Predictors R2 MAE (W/m2) RMSE (W/m2) AIC

[LST] 0.30 78.8 101.2 9.2
[Ta, LST] 0.43 69.7 91.3 9.0
[VPD, LST] 0.38 73.2 95.7 9.1
[U, LST] 0.32 77.2 99.4 92
[PAR, LST] 0.68 49 68.1 8.4
[PAR, Ta, LST] 0.81 37.7 52.2 7.9
[VPD, Ta, LST] 0.58 58.1 79.2 8.7
[Ta, U, LST] 0.44 68.7 90.3 9.0
[PAR, VPD, LST] 0.69 47.9 69.4 8.4
[VPD, U, LST] 0.40 71.8 94.0 9.0
[PAR, U, LST] 0.71 47.7 65.7 8.3
[PAR, VPD, Ta, LST] 0.85 33.4 46.9 7.6
[VPD, Ta, U, LST] 0.60 57.4 77.5 8.7
[PAR, Ta, U, LST] 0.82 36.4 50.8 7.8
[PAR, VPD, U, LST] 0.73 45.2 63.9 8.3
[PAR, VPD, U, Ta, LST] 0.86 30.7 45.0 7.6

Table 3 
Performance of ML models formulated using meteorological predictors and 
proximal sensing NDVI for LE estimation.

Predictors R2 MAE (W/m2) RMSE (W/m2) AIC

[NDVI] 0.20 87.2 109.1 9.3
[PAR, NDVI] 0.77 40.2 57.4 8.1
[VPD, NDVI] 0.50 64.4 85.9 8.9
[Ta, NDVI] 0.48 65.8 87.1 8.9
[U, NDVI] 0.32 79.6 99.8 9.2
[PAR, VPD, NDVI] 0.80 37.2 54.2 7.9
[PAR, Ta, NDVI] 0.81 36.3 52.6 7.9
[Ta, U, NDVI] 0.53 63.1 82.8 8.8
[VPD, Ta, NDVI] 0.54 61.4 82.2 8.8
[PAR, U, NDVI] 0.79 37.4 55 8.0
[VPD, U, NDVI] 0.56 60.1 80.1 8.7
[PAR, VPD, Ta, NDVI] 0.69 50.6 68.8 8.4
[VPD, Ta, U, NDVI] 0.84 34 48.1 7.7
[PAR, Ta, U, NDVI] 0.82 34.4 50.3 7.8
[PAR, VPD, U, NDVI] 0.82 34.6 82.2 7.8
[PAR, VPD, U, Ta, NDVI] 0.86 31.2 45.2 7.6

Table 4 
Performance of ML models formulated using meteorological predictors and both 
proximal sensing variables (LST, NDVI) for LE estimation.

Predictors R2 MAE (W/m2) RMSE (W/m2) AIC

[LST, NDVI] 0.58 57.9 78.2 8.7
[U, LST, NDVI] 0.62 55.2 74.5 8.6
[PAR, LST, NDVI] 0.81 37.4 52.9 7.9
[VPD, LST, NDVI] 0.63 54.1 73.2 8.6
[Ta, LST, NDVI] 0.60 56.2 75.9 8.6
[Ta, U, LST, NDVI] 0.63 53.2 72.9 8.5
[PAR, U, LST, NDVI] 0.68 50.7 68.1 8.4
[VPD, U, LST, NDVI] 0.68 50.0 68.6 8.4
[PAR, VPD, LST, NDVI] 0.82 35.9 51.0 7.8
[PAR, Ta, LST, NDVI] 0.85 33.5 47.6 7.7
[PAR, U, LST, NDVI] 0.85 33.4 86.7 7.8
[VPD, Ta, LST, NDVI] 0.70 48.5 66.4 8.3
[VPD, Ta, U, LST, NDVI] 0.72 52.6 67 8.2
[PAR, Ta, U, LST, NDVI] 0.86 31.6 45.5 7.6
[PAR, VPD, U, LST, NDVI] 0.84 33.1 48.1 7.7
[PAR, VPD, Ta, LST, NDVI] 0.87 31.1 44 7.5
[PAR, VPD, U, Ta, LST, NDVI] 0.88 29.1 42 7.4
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ranging from 0.71 to 0.87 (Tables 2–4). The model incorporating all six 
predictor variables achieved the strongest performance with R2 = 0.88 
(Table 4).

These results demonstrate the power of even a two-predictor model 
of LE when the predictor variables are carefully selected. Predictive 
performance increases with model complexity in general, but careful 
selection of predictor sets can provide near-optimal performance using 
only three or four predictors, demonstrating the value of an exercise 
such as this to carefully evaluate the performance of various predictor 
combinations (Cross and Drewry, 2024; Gaur and Drewry, 2024).

3.2. Value of remote sensing for latent energy flux prediction

Model performance for a set of models that span three levels of 
complexity and increasingly incorporate remote sensing observations is 
presented in Fig. 4. These models all include downwelling photosyn
thetically active radiation and progressively include the two proximal 
remote sensing variables individually and together: [PAR], [PAR, LST], 
[PAR, NDVI] and [PAR, LST, NDVI]. The data points in Fig. 4 are colored 
according to the day of the year (DOY) when they were collected to 
provide insights into the influence of the time within the growing season 
on model performance. As discussed in Section 3.1, incorporating 
remote sensing predictors such as LST and NDVI adds information about 
crop phenological responses. This is illustrated in Fig. 4, where the best 
performing one predictor model [PAR] does not account for crop 
phenology. Consequently, it underestimates LE during the mid-growing 
season (DOY 200 to DOY 240) as depicted in Fig. 4a. Early and late- 
season predictions improve when remote sensing predictors are added 
(Figs. 4b-4d). Adding both remote sensing predictors (LST and NDVI) to 

the meteorological predictor (PAR) substantially enhances LE predic
tion. The [PAR] model has a clear maximum LE prediction limit under 
350 W/m2. This constrained prediction level is also seen in the [PAR, 
LST] model, but with the limit increased to slightly over 400 W/m2, 
likely due to the added degree of freedom provided to the model. These 
model prediction plateaus are not apparent when NDVI, the predictor 
most closely associated with crop phenology, is included.

This suggests that the inclusion of proximal remote sensing variables 
like NDVI and LST improves LE predictions across a range of canopy 
states by including information on crop phenology, which standalone 
meteorological variables do not contain. This reduces errors, particu
larly during key growth stages and periods of high variability in con
ditions such as elevated VPD and temperature. Consequently, proximal 
remote sensing significantly enhances the model’s ability to capture 
dynamic changes in agricultural ecosystems (Amani and 
Shafizadeh-Moghadam, 2023). Fig. 5 presents the variation in 
half-hourly absolute LE prediction error (absolute difference between 
measured LE and predicted LE by ML models) with NDVI (Fig. 5a), LST 
(Fig. 5b) and VPD (Fig. 5c). These prediction error values are averaged 
over bins across the full observation ranges of NDVI, LST and VPD.

The highest error values occur between NDVI values of 0.2–0.5 for 
the [PAR] and [PAR, LST] models (Fig. 5a). The distributions in Fig. 1f 
show that this range of NDVI is less well represented in the complete 
dataset, with most of the data corresponding to a closed, dense soybean 
canopy with NDVI values greater than 0.7. ML models developed using 
only meteorological variables are not able to infer phenological changes 
and the associated impacts on LE and perform best if they assume can
opy closure which is representative of most of the observations. When 
RS observations of canopy density are incorporated into ML models 

Fig. 4. Predicted versus observed LE for half-hourly observations over two growing seasons for four different ML models: (a) [PAR]; (b) [PAR, LST]; (c) [PAR, NDVI]; 
(d) [PAR, LST, NDVI]. Data points are colored according to the day of year that they were collected to provide information on seasonality in model performance.
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([PAR, NDVI], [PAR, LST, NDVI]) these errors are corrected as the ML 
models now have the information they need to estimate LE across the 
full range of canopy structural states spanning growing seasons.

In Fig. 5b the inclusion of either LST or NDVI with PAR allows the ML 
models to accurately model LE, relative to the PAR-only model that has 
minimal information on seasonality. In Fig. 5c it is clear that models that 
include NDVI show significant improvement as VPD increases, as these 
environmental conditions coincide with the phenological conditions 
captured by NDVI data.

Fig. 6 presents the variation of LE with VPD and Ta. The relationship 

between LE and VPD is inherently nonlinear, with a general increase in 
LE as VPD increases up to approximately 2 kPa. Increases in VPD result 
in greater surface water loss driven by increased atmospheric demand. 
These increases continue until a VPD level is reached that triggers sto
matal closure to conserve water as atmospheric demand further in
creases, resulting in a decrease in LE (Wang et al., 2019). This effect is 
seen here as VPD increases beyond 2 kPa (Fig. 6a). Models may struggle 
to accurately capture this nonlinear behavior, leading to greater dis
crepancies between predicted and observed LE flux (Eamus et al., 2013) 
(Fig. 6a). At higher temperatures the interplay between PAR and LE 

Fig. 5. Variation of half-hourly averaged absolute LE prediction errors for [PAR], [PAR, LST], [PAR, NDVI], and [PAR, LST, NDVI] as a function of: (a) NDVI; (b) 
LST; (c) VPD.

Fig. 6. (a) Variation of LE with VPD and (b) variation of LE with Ta. The data points are colored according to the observed PAR values at each time point.
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becomes more complex due to the increased influence of temperature on 
stomatal behavior (Fig. 6b). These influences of temperature, through 
both leaf surface temperature and VPD, can influence stomatal 
conductance and LE, complicating the relationship with PAR and 
potentially contributing to increased errors in LE estimation under 
high-temperature conditions (Oren et al., 1999).

3.3. Model interpretation

The post hoc interpretability of outcomes from the LE models was 
performed using SHAP. Fig. 7 presents SHAP violin summary plots for 
four models that increasingly utilize proximal remote sensing observa
tions: [PAR], [PAR, LST], [PAR, NDVI], and [PAR, LST, NDVI]. The 
violin summary plots show the distribution and attribution of each 
predictor present in each model (Lundberg et al., 2020; Lundberg and 
Lee, 2017; Mehdiyev et al., 2024). Each violin plot shows predictor 
variables ordered by importance, with the most important predictor at 
the top. Wider bands indicate higher data density. The color variation 
from blue to red in Fig. 7 represents an increase in the magnitude of the 
predictor; for instance, as the magnitude of PAR increases the SHAP 
values also increase demonstrating the positive influence of PAR on LE 
prediction estimates, consistent across all four models (Fig. 7a-d). 
Likewise, as NDVI increases it has larger positive impacts on model 
predictions (Fig. 7c,d). Higher NDVI values indicate greater biomass and 
leaf area coverage by the canopy, increasing transpiration and therefore 
LE (Cihlar et al., 1991). These summary plots also present the relative 
importance of predictors; for example, the longer tail of PAR indicates 
that higher PAR values are more important for predicting LE than higher 
magnitudes of NDVI.

The SHAP summary plots further explain the predictive performance 
of these four models as shown in Fig. 4. The SHAP values for the machine 
learning models [PAR, LST] reach larger magnitudes compared to those 
of the [PAR] model, indicating that the inclusion of LST provides the 
model a greater ability to attribute higher PAR values to larger LE fluxes, 
improving some of the overestimation in LE made by the [PAR] model 
for the data points early and late in the growing season when the canopy 
was not yet mature or partially senesced. These errors are greatly 
reduced when NDVI is included in either model (Fig. 4c,d), as NDVI is 
able to modulate how PAR is utilized in LE predictions as a function of 
canopy maturity.

To better understand the synergistic and redundant effects of pre
dictor interactions we produced interaction plots to understand the 
impacts of combining proximal sensing predictors within a model 
(Lundberg et al., 2020). Fig. 8 presents SHAP interaction plots for 
models [PAR], [PAR, LST], [PAR, NDVI], and [PAR, LST, NDVI]. In 
Fig. 8, SHAP attributions to PAR (SHAPPAR) are plotted against PAR 
values for each data point of the two seasons analyzed here. Each sub
plot shows how these attributions change as model composition 

(predictor set) is modified. In addition, coloring data points by their 
respective NDVI and LST values provides insights into how canopy 
phenological state and canopy temperature / physiological controls 
impact these attributions.

Fig. 8a shows that when only PAR is considered in the modeling 
process, SHAPPAR increases approximately linearly with increasing PAR 
across a wide range of PAR values. At the highest PAR values the at
tributions show non-linear shifts due to the inability of PAR alone to 
capture surface energy partitioning and water use across the wide range 
of phenological variability evaluated here (see Fig. 1f). This demon
strates the limitation of PAR as a single predictor used to estimate LE, 
despite the importance of solar energy input to surface energy exchange.

Figs. 8b and 8c show the same SHAPPAR vs PAR dynamic, but for 
models that add one of the proximal sensing predictors, LST (Fig. 8b) 
and NDVI (Fig. 8c). In each case the data points are colored according to 
the value of the proximal remote sensing variable used in the model. 
Both of these models show an increase in SHAPPAR with PAR as would be 
expected with any ML model containing PAR as a predictor. The [PAR, 
NDVI] model (Fig. 8c) shows a wider range of variability in SHAP values 
for PAR, with that variability under both low and high PAR values 
clearly driven by changes in surface vegetation cover (coloration). The 
widest range of SHAPPAR variability is seen at the largest PAR values, 
with these SHAP attributions increasing with increasing NDVI. In gen
eral the slope of the SHAPPAR vs PAR relationship increases as NDVI 
increases.

For the [PAR, LST] model (Fig. 8b) little variability is seen in PAR 
values less than 1000 [μmol/m2/s] which most commonly correspond to 
either early or late day time periods, or cloudy conditions. Under con
ditions associated with the peak of the day when the canopy is strongly 
illuminated by solar radiation the addition of LST to the model allows for 
two distinct dynamics, one in which very high LST conditions cause a 
reduction in SHAPPAR, with surface temperatures less than approxi
mately 35 ◦C resulting in the highest SHAPPAR attributions. This strong 
deviation in SHAP attributions to PAR as LST approaches the highest 
values seen in the dataset implies that physiological control imposed 
during conditions of canopy water stress result in energy partitioning by 
the canopy (increasing Bowen ratio) when energy inputs are highest.

Adding both proximal sensing variables to the predictor set with PAR 
results in a model that performs better than any two-predictor model, 
capturing 81 % of the variability in LE, relative to 78 % for [PAR, NDVI] 
and 68 % for [PAR, LST] (see Figs. 3,4 and Tables 2–4). The [PAR, NDVI, 
LST] model exhibits large variability in SHAPPAR at both low and high 
values of PAR, with clear broad patterns imposed by the phenological 
information contained in NDVI, and regions of sharp reduction in SHAP 
attribution in PAR for LE prediction when the land surface is extremely 
warm (i.e. > 35◦C).

In order to better understand the role of remotely sensed LST on 
model structure and predictions, Fig. 9 provides an analogous figure to 

Fig. 7. SHAP violin summary plots for ML models: (a) [PAR]; (b) [PAR, LST]; (c) [PAR, NDVI]; and (d) [PAR, LST, NDVI]. Coloration from blue to red indicates 
increasing values of the predictor variables.

S. Gaur et al.                                                                                                                                                                                                                                    Agricultural Water Management 317 (2025) 109643 

9 



that of Fig. 8, but examining the SHAP attributions to LST (SHAPLST) as a 
function of LST. Fig. 9a shows an LST-only model ([LST]), with the 
[PAR, LST] model presented with data points colored by NDVI value in 
Fig. 9b and colored by VPD value in Fig. 9c. The three-predictor model 
[PAR, LST, NDVI] attributions are presented with data colored by NDVI 
value in Fig. 9d and colored by VPD value in Fig. 9e.

Across all three levels of model complexity positive model attribu
tions to LST are found within an LST range that spans 20–40 ◦C, when 
positive temperatures are strongly associated with enhanced canopy 
transpiration and photosynthesis.

SHAPLST becomes negative at lower temperatures for [PAR, LST] 
(Fig. 9b,c), between 30 and 40 ◦C, relative to the [PAR, LST, NDVI] 
model (Fig. 9d,e) which maintains positive LST attributions until 40 ◦C. 
Providing the model with the information on canopy development and 
density contained in NDVI allows the model to utilize LST more effec
tively for the range of contrasting conditions spanning bare soil to dense 
closed canopy. Adding NDVI as a predictor also results in larger positive 
attributions to LST, particularly when NDVI is indicative of a closed 
canopy (i.e. > 0.6) and LST is indicative of the canopy receiving greater 
energy to drive LE. The model that includes NDVI produces negative LST 
attributions at LST values approximately greater than 40 ◦C, where VPD 
values reach levels likely to cause stomatal closure and reductions in LE 

(Fig. 9e). Adding NDVI as a predictor allows the model freedom to use a 
wider range of attribution magnitudes to LST dependent on the status of 
the land surface, from bare soil to densely vegetated.

Intermediate NDVI values in the 3-predictor model have primarily 
positive SHAPLST values when NDVI is included (Fig. 9d), in contrast to 
the [PAR, LST] model in which these canopy states, which may allow a 
partial view of the soil and therefore have higher LST, are confused with 
closed-canopy stress states. Likewise, without having knowledge of 
canopy phenology the [PAR, LST] model produces negative SHAPLST for 
intermediate to high VPD values greater than 2.5 kPa. When NDVI is 
included in the model many of these higher VPD conditions result in 
positive attributions as they allow for higher LE when the canopy is not 
stressed. Figure S5 presents SHAP attributions to NDVI (SHAPNDVI) 
plotted against NDVI values for each data point for [NDVI], [PAR, NDVI] 
and [PAR, LST, NDVI] models.

In summary, the SHAP-based interpretability analysis presented here 
highlights the value of continuous proximal remote sensing variables 
like NDVI and LST in improving ML-based LE predictions. While PAR 
remains the single-most important predictor, NDVI and LST play crucial 
roles allowing information on downwelling radiation to be utilized 
appropriately throughout the vegetation growth cycle and during con
ditions when plant physiology constrains gas exchange. This analysis 

Fig. 8. SHAP values for PAR (SHAPPAR) plotted against the associated PAR values for: (a) the ML model developed using only PAR ([PAR]); (b) the [PAR, LST] model 
with data values colored according to their respective LST values; (c) the [PAR, NDVI] model with data values colored according to their respective NDVI values; (d) 
the [PAR, LST, NDVI] model with data values colored according to their respective LST values; (e) the [PAR, LST, NDVI] model with data values colored according to 
their respective NDVI values.
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underscores the importance of proximal remote sensing variables in 
addressing the limitations of traditional meteorological models by 
enhancing the model’s sensitivity to rapid changes in crop phenology 
and surface temperature.

4. Conclusions

We present a systematic evaluation of the utility of machine learning 
to capture the variability in latent energy flux in managed agricultural 
systems across multiple growing seasons utilizing both meteorological 
and in-situ proximal remote sensing of NDVI and LST. We developed and 
rigorously cross-validated 64 sets of ML models that span predictor sets 
utilizing all combinations of one to six variables, including four envi
ronmental variables and two proximal remote sensing variables (NDVI 
and LST).

The findings of the study emphasize the importance of carefully 
selecting predictors or sets of predictors for surface energy balance 
estimation. For example, the performance of two-predictor models, such 
as [PAR, LST] and [PAR, NDVI], substantially improved performance 
over single-predictor models, and performed almost as well as the best 

three- and four-predictor models. While predictive performance gener
ally increases with model complexity, careful selection of predictor sets 
can result in parsimonious models that leverage synergistic information 
for predictions of land-atmosphere interactions.

This study highlights the utility of proximal remote sensing pre
dictors for estimating LE, particularly for models that include only two 
or three predictors: [PAR, LST], [PAR, NDVI], [PAR, LST, NDVI]. These 
relatively simple models utilizing only 2–3 predictors capture between 
68 % and 81 % of the variability in half-hourly latent energy flux across 
two growing seasons of a Midwest US soybean system. These predictors 
provide the machine learning models with information about canopy 
phenology and plant physiological status that is not available in mete
orological observations alone. An explainability analysis provided 
insight into how the ML models utilize the information in remote sensing 
observations, allowing the models to use available information in bio
physically meaningful ways. This work points to the need to evaluate ML 
models developed with weather and proximal sensing information to 
estimate crop water use in other crop species and climate contexts.

Fig. 9. SHAP values of LST plotted against the associated LST values for: (a) the ML model developed using only LST ([LST]); (b) the [PAR, LST] model with data 
values colored according to their respective NDVI values; (c) the [PAR, LST] model with data values colored according to their respective VPD values; (d) the [PAR, 
LST, NDVI] model with data values colored according to their respective NDVI values; (e) the [PAR, LST, NDVI] model with data values colored according to their 
respective VPD values.
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