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Proximal remote sensing has the potential to provide critical information on vegetation biophysical factors that
can predict land-atmosphere exchange of water and energy. Latent energy (LE) flux is traditionally estimated
using process-based models which rely on vegetation parameters that change during the growing season. Data-
driven models have the potential to address these issues by offering flexible predictor selection and more efficient
utilization of the information in predictor sets. These models require careful choice of predictors to avoid
redundancy and allow robust cross-validation. In this study we present a systematic and comprehensive evalu-
ation of machine learning (ML) models to assess the capability of meteorological and proximal sensing data for
predicting LE at a half-hourly temporal resolution across multiple growing seasons for an agricultural system.
The results presented here demonstrate that a model using four environmental predictors in combination with
two proximal sensing variables can capture 88 % of the variability in LE. ML models using only three predictors
(one meteorological and two proximal remote sensing) captured 81 % of LE variability, offering the best trade-off
between performance and complexity. An ML model utilizing only two predictors, one proximal remote sensing
variable and downwelling radiation, captured 77 % of LE variability. These results demonstrate the power of
proximal remote sensing and meteorological observations to estimate land-atmosphere water vapor exchange,
providing a solution where more direct methods such as eddy covariance are not available and for evaluations of
agronomic management and genotypic variations.

Latent energy flux
Evapotranspiration
Surface energy balance
Vegetation biophysics

1. Introduction

Latent energy flux (LE) is a land surface process that plays a central
role in the surface energy balance (Mallick et al., 2013; Anderson et al.,
2011; Mallick et al., 2016). The physiological processes that control LE
link the terrestrial water, carbon, and energy budgets (Drewry et al.,
2010; Drewry et al., 2010; Mallick et al., 2013; Anderson et al., 2011;
Mallick et al., 2016). LE is the energy flux equivalent of evapotranspi-
ration (ET) and therefore defines crop water consumption in agricultural
systems, making LE estimation essential for agricultural water man-
agement broadly. Example applications of LE estimation in managed
systems include irrigation system design (Brombacher et al., 2022; Dela
Cruz et al., 2020; Arif et al., 2022), crop water requirement monitoring
(Li et al., 2010; Zhang et al., 2023), climate change impact assessments
on agriculture (Castellvi and Snyder, 2010; Denich and Bradford, 2010;

Gaur et al., 2022; Payero and Irmak, 2008) and characterizing genotypic
and agronomic management variations in crop growth (Bai et al., 2024).

LE can be measured using direct methods such as field lysimeters that
use changes in above-ground mass to estimate water use (Castellvi and
Snyder, 2010; Denich and Bradford, 2010; Payero and Irmak, 2008) and
eddy covariance (EC) that uses high frequency observations of water
vapor concentration and wind fluctuations to estimate net
canopy-atmosphere exchange of latent energy (Harder et al., 2023;
Baldocchi, 2020). Remote sensing (RS) techniques are widely used to
estimate LE at larger scales, and at locations where more direct but less
spatially extensive field methods such as EC are not available (Kustas
and Norman, 1996; Mallick et al., 2007; Anderson et al., 2011).
RS-based models rely on an understanding of the surface energy balance
and utilize observations of variables related to vegetation structure or
temperature to constrain the energy balance (Huang et al., 2019; Zhang
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et al., 2023). Unlike reflectance measurements of vegetation in the
visible through shortwave infrared (i.e. solar spectrum) which take
several days to show signs of stress, remote sensing of LE and associated
physiological changes offers the potential for earlier detection of
ecosystem stress (Wang et al., 2019).

RS models have often relied on either vegetation indices to integrate
observations of canopy development and phenology (Liu et al., 2022)
and productivity (Dold et al., 2019), or land surface temperature (LST)
to provide information on the physiological status of the vegetation
(Bhattarai et al., 2019; Anderson et al., 2012). Vegetation index-based
models derive ET based on crop coefficients as a function of spectral
reflectance values. In contrast, LST-based models utilize thermal
infrared remote sensing observations to calculate LST to close the energy
balance (Chen et al., 2023; Chen and Liu, 2020). In both cases, RS-based
models often rely on models that are developed around biophysical
principles, with varying levels of sophistication. These models have
demonstrated the utility of both reflectance-based vegetation indices
and land surface temperature to accurately estimate the
land-atmosphere exchange of water vapor. However, these models rely
on accurate specification of parameter values that often change with
crop growth stage and environmental conditions, providing challenges
to utilizing these formulations in highly dynamic agricultural systems.
Proximal remote sensing offers a solution by providing high-frequency,
real-time data directly from the field (e.g., continuous NDVI and LST
measurements at sub-hourly intervals). This allows for much more dy-
namic and responsive modeling, as real-time measurements can capture
rapid changes in crop physiology and environmental conditions that are
missed by traditional satellite-based RS models (Yi et al., 2024). Another
advantage of proximal remote sensing is the ability to estimate LE for a
variety of treatments such as different cropping systems or crop geno-
types within a narrow range of soil and weather conditions (Bai et al.,
2024). This approach could be a promising way to guide the improve-
ment of water-related crop traits, such as water use efficiency, when
coupled with machine learning (Ferguson et al., 2021).

Machine learning (ML) models offer a powerful new approach for
directly modeling LE or physiological variables that control surface
water flux (Abdullah et al., 2015; Amani and Shafizadeh-Moghadam,
2023; Gaur and Drewry, 2024; Bai et al., 2021). The non-parametric
nature of ML, flexibility in predictor selection, and robust predictive
capabilities make it particularly compelling for predictions in earth
sciences in general and hydrology and climate and agricultural sciences
in particular (Cross and Drewry, 2024; Gaur and Drewry, 2024; Reich-
stein et al., 2019; Vidyarthi and Jain, 2023; Vidyarthi and Jain, 2020;
Zhao et al., 2019; Bai et al., 2021). Numerous studies have employed a
range of meteorological datasets for LE estimation. Granata (2019)
applied multiple machine-learning algorithms with different combina-
tions of meteorological predictors for LE prediction. Yamac and
Todorovic (2020) evaluated the performance of four scenarios involving
different combinations of available meteorological variables for pre-
dicting crop evapotranspiration using ML algorithms. Their findings
indicated that the model incorporating the full set of meteorological
predictors outperformed the other ML models. Bai et al. (2021)
emphasized the utility of multi-ensemble machine ML models in pre-
dicting crop evapotranspiration across a wide range of environmental
conditions. Their study showed that ML-based ensemble models out-
performed conventional ensemble models in ET predictions. These
studies that utilized machine learning for LE estimation have relied
primarily on weather data, demonstrating the power of these methods in
combination with widely available in-situ observations, but leaving
open questions related to the value of information in remote sensing
observations from proximal, airborne or orbital systems. Recent ad-
vances in ML have largely focused on utilizing satellite-based RS ob-
servations and ambient environmental variables (Jung et al., 2019) to
estimate LE, but these approaches lack information on the rapid changes
and fine-scale variability inherent in dynamic terrestrial ecosystems,
where crop growth and environmental conditions can rapidly change
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(Amani and Shafizadeh-Moghadam, 2023). In contrast, proximal RS can
address these shortcomings by providing high-frequency observations
for a more accurate representation of land surface conditions. While ML
models have shown remarkable predictive capabilities and are increas-
ingly applied in water and energy flux estimation (Lucarini et al., 2024),
understanding how different predictor combinations influence pre-
dictions is often lacking, hindering parsimonious model selection.
Interpretability tools, such as Shapley Additive Explanations (SHAP),
provide techniques to uncover the contribution of each predictor vari-
able, making it easier to understand how input variables interact to in-
fluence the target predictions. This is especially important for
understanding model outcomes across different crop phenological stages
and environmental conditions (Hu et al., 2022; Baptista et al., 2022).

In this study we present a systematic evaluation of the use of weather
and proximal remote sensing observations for the estimation of LE in an
agricultural system. Eddy covariance observations of LE provide vali-
dation data spanning two soybean growing seasons at a site outside of
Ames, IA, USA. Proximal remotely sensed estimates of normalized dif-
ference vegetation index and LST allow us to examine how high fre-
quency (sub-hourly) information on canopy structure and
environmental and physiological controls on surface temperature can be
leveraged for LE estimation using a flexible deep learning neural
network (DLNN). The DLNN is a multi-layer neural network that extracts
higher-level features from input datasets through representation
learning (LeCun et al., 2015). This study provides guidelines for pre-
dictor combinations that provide near-optimal / parsimonious predic-
tive performance, leveraging both widely available weather and remote
sensing variables across a wide range of phenological and climatic
variability. In addition, explainable machine learning is applied to un-
derstand under what conditions across a growing season specific pre-
dictors are required, mitigating many challenges associated with the
interpretability and physical consistency of ML approaches for envi-
ronmental prediction.

2. Methodology

In the sub-sections below we describe the SABR study site and array
of flux and environmental / meteorological variables collected at the site
that are utilized here. This is followed by a description of the two in-situ
proximal remote sensing observations that, in combination with envi-
ronmental variables, are evaluated as predictors in machine learning
models of latent energy flux. Following this we describe our approach to
systematically evaluate a wide range of ML models spanning one to six
predictor variables, allowing us to identify the most synergistic and
parsimonious sets of predictors, and particularly the value added by
proximal remote sensing of biophysical variables related to vegetation
phenology and physiological response to environment. We conclude this
section with descriptions of our methods for model development and
validation and the application of post-hoc ML interpretability methods.

2.1. SABR study site

The data used in this study was collected at the Iowa State University
Sustainable Advanced Bioeconomy Research Farm (SABR) in Boone
County, IA, near Ames (42.00°N, 93.70°W) (Bendorf et al., 2022). SABR
features four independently monitored plots to assess the performance
of soybean, corn, sorghum and miscanthus under identical climatolog-
ical and soil conditions. Each plot contains an eddy covariance tower
installed in the center of the plots to measure the exchange of mass and
energy between each crop canopy and the atmosphere. The soil at the
SABR site is primarily composed of Canisteo clay loam (59 %), with
smaller proportions of Clarion loam (19.3 %) and Webster clay loam
(18.1 %). A detailed description of the sensors and data protocols uti-
lized at SABR can be found at: https://sabr.shinyapps.io/appSABR/.

Here we focus on data collected for the SABR soybean plots for the
2021 and 2022 growing seasons. Relative to 2022, the 2021 growing
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season had higher temperatures and reduced precipitation, particularly
during the critical crop development phase that began in June (Cross
and Drewry, 2024). The data used in this study was collected from each
of the two study years between June 2 to September 30, providing
approximately 5500 half-hourly observations.

2.1.1. Flux and environmental data

The environmental predictors utilized in this study were collected on
the sampling tower in the SABR soybean fields in 2021 and 2022, co-
located with the eddy covariance sampling system used to measure
latent energy flux. These environmental predictors included air tem-
perature (T,, °C) and relative humidity collected with a Campbell Sci-
entific HMP-155. Vapor pressure deficit (VPD, kPa) was computed from
these variables using the Tetens equation (Campbell and Norman,
2000). Photosynthetically active radiation (PAR, pmol/mz/s) was
collected with a LI-190 quantum sensor (Licor Biosciences, Nebraska,
USA). Wind speed (U, m/s) was collected with a 3D sonic anemometer
(Gill WindMaster, Hampshire, UK). A Kipp & Zonen CNR4 net radiom-
eter provided downwelling and upwelling shortwave and longwave ra-
diation, and sensors measured soil temperature and soil heat flux
(Hukseflux HFPO1SC soil heat flux plates) to provide necessary
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information for surface energy budget closure.

All environmental variables were averaged to 30-minute intervals.
Missing meteorological data was first filled using data from a nearby
meteorological station at the Ames Municipal Airport as part of the
standard processing methods applied to SABR data (Cross and Drewry,
2024). Any remaining missing data points were filled using a linear
interpolation from one of the neighboring SABR towers where the
missing variables were available.

LE measurements were obtained from the eddy covariance instru-
mentation on the soybean tower and averaged to 30-minute resolution.
No gap-filling was applied to the LE observations, ensuring that model
development and validation conducted in this study was performed
using observations and not modeled estimates. Bowen ratio correction
(Dugas et al., 1991) was applied to the LE data before its use in the
model development and evaluation exercises presented here to ensure
that energy balance closure was maintained for each observation period.

2.1.2. Proximal remote sensing data

In-situ proximal remote sensing instruments were deployed on the
soybean EC tower throughout the study period to continuously monitor
LST and the normalized difference vegetation index (NDVI) (Tucker,
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Fig. 1. Histograms and density plots of (a-d) environmental variables used as predictors, (e-f) proximal remote-sensing variables used as predictors, and (g) latent
energy flux observations used for model development and validation. (h-i) LST plotted against T, with data points colored according to the NDVI and LE values of
each observation, respectively. All data was collected at the SABR soybean site during the 2021 and 2022 growing seasons.
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1979). These instruments provided high temporal (5-minute) resolution
observations of these remote sensing variables, which were averaged to
30-minute periods to coincide with the flux and environmental data.
NDVI was collected using two-band radiometers (SRS sensors from
METER Inc., WA, USA) affixed to each of the four towers. The sensors
were positioned to view a homogeneous region of the canopy to the
south of each tower. To reduce noise and variability, a 4-hour window
around local solar noon was selected and averaged each day to produce
a daily NDVI value. This was done as daily NDVI observations are suf-
ficient to characterize variability in canopy development relevant to our
modeling efforts here. LST measurements were collected using infrared
thermometers (Apogee Instruments, Utah, USA) deployed on each
tower, oriented to look down onto the land surface/canopy from an
approximate height of 3-4 m above the surface.

Fig. 1 presents histograms and density plots for the environmental
and proximal remote sensing predictors utilized in this study. PAR ex-
hibits a fairly uniform distribution as observations were collected across
each study day. VPD and U show a wide range of variability, with the
majority of observations occurring during fairly low VPD and U condi-
tions. A clear peak in the NDVI distribution (values greater than 0.7)
shows that most observations throughout these two growing seasons
were made when the soybean canopy was dense. Although T, and LST
both represent temperature observations, their distributions differ as
LST is in part controlled by ambient temperature, but also by physio-
logical controls and associated energy balance processes. Plotting LST as
a function of T, and coloring data points according to values of NDVI and
LE (Figs. 1h and 1i, respectively) shows a high degree of correlation
between the two variables, with a correlation coefficient of 0.75 across
the two growing seasons. These temperature variables deviate from a
strong linear correlation as T, increases above 18 °C. As NDVI increases
to its maximum values T, increases as the growing season peaks, but LST
demonstrates the impact of evaporative cooling to lower surface tem-
peratures relative to maximum LST seen when the canopy is not closed
(lower NDVI).

In general, all predictors (PAR, VPD, T,, U, NDVI, LST) display a wide
range of variability across these two growing seasons, providing a strong
test of the ability of machine learning to accurately predict LE.
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2.2. Machine learning model development for latent energy flux
estimation

In this study we develop and apply a large set of deep learning neural
networks to explore the ability of various predictor sets to accurately
predict latent energy flux across growing seasons as crop phenology and
ambient environment show dramatic variations. Fig. 2 presents a sche-
matic of the methodology we apply here. Latent energy flux is often
predicted using crop or biophysical models driven by weather data in
combination with an understanding of the canopy state (Drewry et al.,
2010; Drewry et al., 2010; Le et al., 2012; Anderson et al., 2011; Mallick
et al.,, 2016). Here we utilized six predictor variables spanning both
meteorological (PAR, VPD, T,, U) and proximal-remote sensing (NDVI,
LST) to predict LE using DLNNs (Fig. 2a). We retain both T, and LST as
predictors in the models we develop here to evaluate the unique infor-
mation each may have toward LE prediction, and the extent to which
their combination provides value (i.e. through the difference in air and
surface temperature) in LE prediction.

2.2.1. Categorization of ML models for LE predictions

Here we utilize meteorological and proximal-remote sensing pre-
dictors for LE predictions as discussed in Section 2.2. We organize this
large set of ML models into four categories (Fig. 2b) to allow us to
examine the impact of proximal remote sensing information on model
performance. Within each of these four categories, we further consider
the models in terms of their complexity, defined here simply as the
number of predictors used by each model. This provides a framework for
understanding model parsimony, i.e. how predictive performance varies
as a function of model complexity, and within each complexity level (i.e.
for all models developed using the same number of predictor variables).
This allows us to determine which predictor sets perform best and how
proximal sensing information improves predictive performance for LE.
Additionally, this approach can provide insights into the biophysical
controls on LE and enhance understanding of the functioning of the
cropping system. Overall, we develop and evaluate 64 ML models
developed using unique sets of predictor variables to predict LE:
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Fig. 2. Schematic of the methodology used in this study, including (a) a diagram depicting the field observations used in this study, and (b) the variable combi-

nations used to formulate the four primary model categories evaluated here for the prediction of LE (LE).
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e Category 1: ML models formulated using only meteorological pre-
dictors using all possible combinations of meteorological predictors:
PAR, VPD, T,, and U. This includes the formulation of fifteen models
in total: one-predictor models ([PAR], [VPD], [T,l, [U]); two-
predictor models ([PAR, VPD], [PAR, T,l, [PAR, U], [VPD, T,l,
[VPD, U], [T,, U]); three-predictor models ([PAR, VPD, T,], [PAR,
VPD, U], [VPD, T,, U], [PAR, T,, Ul); and a four-predictor model
([PAR, VPD, Ty, U])

Category 2: ML models formulated using meteorological predictors
in combination with proximal sensing LST. In this category a total of
sixteen models are formulated that include: one-predictor model
([LST]); two-predictor models ([T,, LST], [VPD, LST], [U, LSTI],
[PAR, LST]); three-predictor models ([PAR, T,, LST], [VPD, T,, LSTI,
[Ta U, LST], [PAR, VPD, LST], [VPD, U, LST], [PAR, U, LST]); four-
predictor models ([PAR, VPD, Ty, LST], [VPD, T,, U, LST], [PAR, T,,
U, LSTI, [PAR, VPD, U, LST]); and a five-predictor model ([PAR,
VPD, U, T,, LST]).

Category 3: ML models formulated using meteorological predictors
in combination with proximal sensing NDVI. The developed models
include sixteen models in total: one-predictor model ([NDVI]); two-
predictor models ([PAR, NDVI], [VPD, NDVI], [T, NDVI], [U,
NDVI]); three-predictor models ([PAR, VPD, NDVI], [PAR, T,
NDVI], [T, U, NDVI], [VPD, T,, NDVI], [PAR, U, NDVI], [VPD, U,
NDVI] ); four-predictor models ([PAR, VPD, T,, NDVI], [VPD, T,, U,
NDVI], [PAR, T,, U, NDVI], [PAR, VPD, U, NDVI]); and a five-
predictor model ([PAR, VPD, U, T,, NDVI]).

Category 4: ML models formulated using meteorological predictors
in combination with both proximal sensing variables. These predic-
tor combinations resulted in the formulation of seventeen models: a
two-predictor model ([LST, NDVI]); three-predictor models ([U, LST,
NDVI], [PAR, LST, NDVI], [VPD, LST, NDVI], [T,, LST, NDVI]); four-
predictor models ([T, U, LST, NDVI], [PAR, U, LST, NDVI], [VPD, U,
LST, NDVI], [PAR, VPD, LST, NDVI], [PAR, T,, LST, NDVI], [PAR, U,
LST, NDVI], [VPD, T,, LST, NDVI]); five-predictor models ([VPD, T,,
U, LST, NDVI], [PAR, T,, U, LST, NDVI], [PAR, VPD, U, LST, NDVI],
[PAR, VPD, T,, LST, NDVI]); and a six-predictor model ([PAR, VPD,
U, T,, LST, NDVI]).

2.2.2. Machine learning model training and evaluation

All ML models were robustly cross validated following the proced-
ures of Cross and Drewry (2024) and Gaur and Drewry (2024). The
cross-validation scheme used in this study involves iterative training and
validation across 100 random splits of the data. Model training (cali-
bration) is conducted by identifying the optimal set of hyperparameters
based on these 100 random splits, each of which is used to train a
separate model. Thus, this robust cross-validation framework effectively
incorporates both the calibration (training) and validation of the ma-
chine learning models. A detailed description of the cross validation
procedure we used follows.

The data was randomly split into training (80 %) and validation
(20 %) sets using an iterative procedure in which the dataset was
randomly split and unique models developed for each of 100 data splits.
All ML model development presented here was performed using the
Python programming language. All predictors were normalized to have
a zero mean and one standard deviation prior to model development.
Hyperparameter tuning (HPT) using randomized search was performed
on each randomly split dataset, resulting in 100 sets of best-performing
hyperparameters. Here HPT was performed on three hyperparameters:
(a) the number of hidden layers which was varied from 4 to 12; (b) the
number of neurons which was allowed to take on one of the following
values: 16, 32, 64, 128, 256, 518; and (c) the learning rate which was
allowed to be one of the following values: 0.001, 0.0001, 0.0002,
0.0003, 0.0004, 0.0005. A rectified linear unit (ReLU) was used for the
activation function of the neural networks developed here.

Early stopping was performed to prevent model overfitting (Zhao
et al., 2019). Early stopping evaluates the performance of the ML model
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on the validation set and terminates the training process when valida-
tion loss improvement plateaus (Vilares Ferro et al., 2023; Zhao et al.,
2019). Here, the early stopping criteria was set to 50 epochs. Each ML
model was individually trained on each random split of data and the
final performance of the model was obtained by averaging the perfor-
mance metrics for each data point on validation sets. The post model
performance was evaluated using the coefficient of determination (R?),
root mean square error (RMSE), mean absolute error (MAE) and Akaike
information criterion (AIC).

2.3. Posthoc interpretability of ML predictions

While ML techniques are highly flexible modeling tools, they lack the
interpretability of process-based models (Reichstein et al., 2022;
Reichstein et al., 2019). Explainable machine learning is a set of tech-
niques that provides insights into the value of predictor variables to be
derived, illuminating aspects of model structure in what are often
considered to be ‘black-box’ modeling approaches (Lundberg et al.,
2020; Lundberg and Lee, 2017; Zhi et al., 2024). Here we utilized the
SHapley Additive exPlanations algorithm (Lundberg and Lee, 2017) to
interpret the outcomes of DLNNs used for predicting LE. We used SHAP
to understand how different input predictors affect the performance of
the models developed here. SHAP values provide information about how
an individual data point in a predictor contributes to the model pre-
dictions in terms of local explanation (Lundberg et al., 2020). This can
provide insights into the synergisms and redundancies inherent between
predictors and can help to physically interpret model performance when
evaluated against environmental or phenological conditions (Cross and
Drewry, 2024). We use beeswarm plots to visualize instance-based local
explanations in terms of magnitude, prevalence, and direction of the
predictor’s effect on LE estimates. These plots show the distribution of
individual continuous variables (predictors in our case), with each data
point plotted separately. They offer deeper insights, especially when
comparing or visualizing multiple variables. Further details about the
SHAP algorithm can be found in Lundberg and Lee (2017) and Lundberg
et al. (2020).

3. Results and discussion
3.1. Latent energy flux prediction with model complexity

The average performance of the ML models on the validation fraction
across one hundred model iterations are presented in Fig. 3 as a function
of model complexity (number of predictor variables used). The best sets
of hyperparameters obtained from hyperparameter tuning over one
hundred iterations fall within the following ranges: number of layers
(3-10), number of neurons per layer (32-518), and learning rate
(0.0001-0.001). Figures S1-S4 illustrate the distribution of these pa-
rameters across all iterations for each model using box plots. The one-
predictor models vary across a wide range of predictive performance
with R? values ranging from 0.05 for U to 0.56 for the PAR model
(Tables 1-3). PAR is critical for LE predictions as it is a shortwave ra-
diation variable associated with the primary source of energy absorbed
by leaves during the day to drive photosynthesis and energy exchange.

The performance of the two-predictor models ranges from R? = 0.26
to R% = 0.77 (Tables 1-4). Among the models driven solely by meteo-
rological predictors [PAR, VPD] and [PAR, T,] capture 61 % and 60 % of
the variability in LE predictions (Table 1), respectively. Of the two-
predictor models, the best performing combination includes down-
welling PAR and NDVI [PAR, NDVI] (Table 3) which captures 77 % of
the variability in LE over the two growing seasons examined here. This
finding is consistent with those of Wang et al. (2021), Wu et al. (2020)
and Yebra et al. (2015) who found that NDVI adds critical information
on seasonal phenological changes in vegetation that substantially im-
proves LE predictions. The two-predictor model that combines down-
welling PAR with proximal LST also performs quite well (R2 = 0.68)
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Fig. 3. Performance of ML models during validation. The shaded regions
represent the range of R? performance for all models with a specific number of
predictors. Symbols within those shaded regions show the R? performance of
specific models with that number of predictors. Tables 1-4 provide statistical
performance metrics for all models developed in this study.

Table 1
Performance of ML models formulated using only meteorological predictors for
LE estimation.

Predictors R? MAE (W/m?) RMSE (W/m?) AIC
[PAR] 0.56 60 80.7 8.7
[VPD] 0.23 84.6 106.35 9.3
[Tal 0.27 81.3 103.5 9.2
[u1 0.05 98.3 118.4 9.5
[PAR, VPD] 0.61 54.6 75.3 8.6
[PAR, T,] 0.60 55.1 76.2 8.6
[PAR, U] 0.57 58.4 79.8 8.7
[VPD, T,] 0.39 73.4 95 9.1
[VPD, U] 0.26 82.9 104.5 9.2
[T, Ul 0.29 80.3 102.3 9.2
[PAR, VPD, T,] 0.75 42.2 60.2 8.2
[PAR, VPD, U] 0.63 52.8 73.8 8.6
[VPD, T,, U] 0.42 70.9 91.9 9.0
[PAR, T,, U] 0.62 53.8 75.05 8.6
[PAR, VPD, T,, U] 0.76 41.2 59.6 8.1

(Table 2). This is likely the case as LST contains information about
canopy phenology, as the land surface tends to cool as it transitions from
bare soil to fully vegetated due to the effect of evaporative cooling from
evapotranspiration (Feldman et al., 2023) It is notable that multiple
two-predictor models are capable of capturing greater than 60 % of the
variability in LE across multiple growing seasons.

The predictive performance of the three-predictor models ranges
from R? = 0.40 to R? = 0.81 (Tables 1-4). Among these, the models
incorporating a combination of environmental and remote sensing
predictors provide the best performance compared to those driven solely
by environmental predictors. Downwelling PAR in addition to the two
remote sensing variables ([PAR, LST, NDVI]) produces a model that
captures 81 % of the observed LE variability (R2 = 0.81, Table 4), as
does [PAR, T,, LST] (R% = 0.81, Table 2). While the performance of these
three-predictor models is notable, it is only slightly better than the best-
performing two-predictor model, demonstrating the importance of
knowledge of energy input into the system and vegetation structure (i.e.
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Table 2
Performance of ML models formulated using meteorological predictors and
proximal sensing LST for LE estimation.

Predictors R? MAE (W/m?) RMSE (W/m?) AIC
[LST] 0.30 78.8 101.2 9.2
[T,, LST] 0.43 69.7 91.3 9.0
[VPD, LST] 0.38 73.2 95.7 9.1
[U, LST] 0.32 77.2 99.4 92

[PAR, LST] 0.68 49 68.1 8.4
[PAR, T,, LST] 0.81 37.7 52.2 7.9
[VPD, T,, LST] 0.58 58.1 79.2 8.7
[T,, U, LST] 0.44 68.7 90.3 9.0
[PAR, VPD, LST] 0.69 47.9 69.4 8.4
[VPD, U, LST] 0.40 71.8 94.0 9.0
[PAR, U, LST] 0.71 47.7 65.7 8.3
[PAR, VPD, T,, LST] 0.85 33.4 46.9 7.6
[VPD, T,, U, LST] 0.60 57.4 77.5 8.7
[PAR, T,, U, LST] 0.82 36.4 50.8 7.8
[PAR, VPD, U, LST] 0.73 45.2 63.9 8.3
[PAR, VPD, U, T,, LST] 0.86 30.7 45.0 7.6

Table 3

Performance of ML models formulated using meteorological predictors and
proximal sensing NDVI for LE estimation.

Predictors R? MAE (W/m?) RMSE (W/m?) AIC
[NDVI] 0.20 87.2 109.1 9.3
[PAR, NDVI] 0.77 40.2 57.4 8.1
[VPD, NDVI] 0.50 64.4 85.9 8.9
[T,, NDVI] 0.48 65.8 87.1 8.9
[U, NDVI] 0.32 79.6 99.8 9.2
[PAR, VPD, NDVI] 0.80 37.2 54.2 7.9
[PAR, T,, NDVI] 0.81 36.3 52.6 7.9
[Ta, U, NDVI] 0.53 63.1 82.8 8.8
[VPD, T,, NDVI] 0.54 61.4 82.2 8.8
[PAR, U, NDVI] 0.79 37.4 55 8.0
[VPD, U, NDVI] 0.56 60.1 80.1 8.7
[PAR, VPD, T,, NDVI] 0.69 50.6 68.8 8.4
[VPD, T,, U, NDVI] 0.84 34 48.1 7.7
[PAR, T,, U, NDVI] 0.82 34.4 50.3 7.8
[PAR, VPD, U, NDVI] 0.82 34.6 82.2 7.8
[PAR, VPD, U, T,, NDVI] 0.86 31.2 45.2 7.6
Table 4

Performance of ML models formulated using meteorological predictors and both
proximal sensing variables (LST, NDVI) for LE estimation.

Predictors R? MAE (W/m?)  RMSE (W/m?)  AIC
[LST, NDVI] 0.58 579 78.2 8.7
[U, LST, NDVI] 0.62 552 74.5 8.6
[PAR, LST, NDVI] 0.81 37.4 52.9 7.9
[VPD, LST, NDVI] 0.63  54.1 73.2 8.6
[T,, LST, NDVI] 0.60  56.2 75.9 8.6
[Ta, U, LST, NDVI] 0.63 532 72.9 8.5
[PAR, U, LST, NDVI] 0.68  50.7 68.1 8.4
[VPD, U, LST, NDVI] 0.68  50.0 68.6 8.4
[PAR, VPD, LST, NDVI] 0.82 359 51.0 7.8
[PAR, T,, LST, NDVI] 0.85 335 47.6 7.7
[PAR, U, LST, NDVI] 0.85 334 86.7 7.8
[VPD, T,, LST, NDVI] 0.70 485 66.4 8.3
[VPD, Ty, U, LST, NDVI] 072 526 67 8.2
[PAR, T,, U, LST, NDVI] 0.86 316 45.5 7.6
[PAR, VPD, U, LST, NDVI] 0.84 331 48.1 7.7
[PAR, VPD, T,, LST, NDVI] 0.87 311 44 7.5
[PAR, VPD, U, T,, LST, NDVI] ~ 0.88  29.1 42 7.4
phenology).

The performance of the four-predictor models ranges from R? = 0.60
to R = 0.85 (Tables 1-4). Generally, the models incorporating both
meteorological and remote sensing predictors demonstrate better pre-
dictive performance than those that only use meteorological predictors.
The five-predictor models have R? validation performance values
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ranging from 0.71 to 0.87 (Tables 2-4). The model incorporating all six
predictor variables achieved the strongest performance with R? = 0.88
(Table 4).

These results demonstrate the power of even a two-predictor model
of LE when the predictor variables are carefully selected. Predictive
performance increases with model complexity in general, but careful
selection of predictor sets can provide near-optimal performance using
only three or four predictors, demonstrating the value of an exercise
such as this to carefully evaluate the performance of various predictor
combinations (Cross and Drewry, 2024; Gaur and Drewry, 2024).

3.2. Value of remote sensing for latent energy flux prediction

Model performance for a set of models that span three levels of
complexity and increasingly incorporate remote sensing observations is
presented in Fig. 4. These models all include downwelling photosyn-
thetically active radiation and progressively include the two proximal
remote sensing variables individually and together: [PAR], [PAR, LST],
[PAR, NDVI] and [PAR, LST, NDVI]. The data points in Fig. 4 are colored
according to the day of the year (DOY) when they were collected to
provide insights into the influence of the time within the growing season
on model performance. As discussed in Section 3.1, incorporating
remote sensing predictors such as LST and NDVI adds information about
crop phenological responses. This is illustrated in Fig. 4, where the best
performing one predictor model [PAR] does not account for crop
phenology. Consequently, it underestimates LE during the mid-growing
season (DOY 200 to DOY 240) as depicted in Fig. 4a. Early and late-
season predictions improve when remote sensing predictors are added
(Figs. 4b-4d). Adding both remote sensing predictors (LST and NDVI) to
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the meteorological predictor (PAR) substantially enhances LE predic-
tion. The [PAR] model has a clear maximum LE prediction limit under
350 W/m?2. This constrained prediction level is also seen in the [PAR,
LST] model, but with the limit increased to slightly over 400 W/m?,
likely due to the added degree of freedom provided to the model. These
model prediction plateaus are not apparent when NDVI, the predictor
most closely associated with crop phenology, is included.

This suggests that the inclusion of proximal remote sensing variables
like NDVI and LST improves LE predictions across a range of canopy
states by including information on crop phenology, which standalone
meteorological variables do not contain. This reduces errors, particu-
larly during key growth stages and periods of high variability in con-
ditions such as elevated VPD and temperature. Consequently, proximal
remote sensing significantly enhances the model’s ability to capture
dynamic changes in agricultural ecosystems (Amani and
Shafizadeh-Moghadam, 2023). Fig. 5 presents the variation in
half-hourly absolute LE prediction error (absolute difference between
measured LE and predicted LE by ML models) with NDVI (Fig. 5a), LST
(Fig. 5b) and VPD (Fig. 5¢). These prediction error values are averaged
over bins across the full observation ranges of NDVI, LST and VPD.

The highest error values occur between NDVI values of 0.2-0.5 for
the [PAR] and [PAR, LST] models (Fig. 5a). The distributions in Fig. 1f
show that this range of NDVI is less well represented in the complete
dataset, with most of the data corresponding to a closed, dense soybean
canopy with NDVI values greater than 0.7. ML models developed using
only meteorological variables are not able to infer phenological changes
and the associated impacts on LE and perform best if they assume can-
opy closure which is representative of most of the observations. When
RS observations of canopy density are incorporated into ML models
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Fig. 4. Predicted versus observed LE for half-hourly observations over two growing seasons for four different ML models: (a) [PAR]; (b) [PAR, LSTT; (c) [PAR, NDVI];
(d) [PAR, LST, NDVI]. Data points are colored according to the day of year that they were collected to provide information on seasonality in model performance.
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LST; (c) VPD.

([PAR, NDVI], [PAR, LST, NDVI]) these errors are corrected as the ML
models now have the information they need to estimate LE across the
full range of canopy structural states spanning growing seasons.

In Fig. 5b the inclusion of either LST or NDVI with PAR allows the ML
models to accurately model LE, relative to the PAR-only model that has
minimal information on seasonality. In Fig. 5c it is clear that models that
include NDVI show significant improvement as VPD increases, as these
environmental conditions coincide with the phenological conditions
captured by NDVI data.

Fig. 6 presents the variation of LE with VPD and T,. The relationship
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between LE and VPD is inherently nonlinear, with a general increase in
LE as VPD increases up to approximately 2 kPa. Increases in VPD result
in greater surface water loss driven by increased atmospheric demand.
These increases continue until a VPD level is reached that triggers sto-
matal closure to conserve water as atmospheric demand further in-
creases, resulting in a decrease in LE (Wang et al., 2019). This effect is
seen here as VPD increases beyond 2 kPa (Fig. 6a). Models may struggle
to accurately capture this nonlinear behavior, leading to greater dis-
crepancies between predicted and observed LE flux (Eamus et al., 2013)
(Fig. 6a). At higher temperatures the interplay between PAR and LE
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Fig. 6. (a) Variation of LE with VPD and (b) variation of LE with T,. The data points are colored according to the observed PAR values at each time point.
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becomes more complex due to the increased influence of temperature on
stomatal behavior (Fig. 6b). These influences of temperature, through
both leaf surface temperature and VPD, can influence stomatal
conductance and LE, complicating the relationship with PAR and
potentially contributing to increased errors in LE estimation under
high-temperature conditions (Oren et al., 1999).

3.3. Model interpretation

The post hoc interpretability of outcomes from the LE models was
performed using SHAP. Fig. 7 presents SHAP violin summary plots for
four models that increasingly utilize proximal remote sensing observa-
tions: [PAR], [PAR, LST], [PAR, NDVI], and [PAR, LST, NDVI]. The
violin summary plots show the distribution and attribution of each
predictor present in each model (Lundberg et al., 2020; Lundberg and
Lee, 2017; Mehdiyev et al., 2024). Each violin plot shows predictor
variables ordered by importance, with the most important predictor at
the top. Wider bands indicate higher data density. The color variation
from blue to red in Fig. 7 represents an increase in the magnitude of the
predictor; for instance, as the magnitude of PAR increases the SHAP
values also increase demonstrating the positive influence of PAR on LE
prediction estimates, consistent across all four models (Fig. 7a-d).
Likewise, as NDVI increases it has larger positive impacts on model
predictions (Fig. 7c,d). Higher NDVI values indicate greater biomass and
leaf area coverage by the canopy, increasing transpiration and therefore
LE (Cihlar et al., 1991). These summary plots also present the relative
importance of predictors; for example, the longer tail of PAR indicates
that higher PAR values are more important for predicting LE than higher
magnitudes of NDVIL

The SHAP summary plots further explain the predictive performance
of these four models as shown in Fig. 4. The SHAP values for the machine
learning models [PAR, LST] reach larger magnitudes compared to those
of the [PAR] model, indicating that the inclusion of LST provides the
model a greater ability to attribute higher PAR values to larger LE fluxes,
improving some of the overestimation in LE made by the [PAR] model
for the data points early and late in the growing season when the canopy
was not yet mature or partially senesced. These errors are greatly
reduced when NDVI is included in either model (Fig. 4c,d), as NDVI is
able to modulate how PAR is utilized in LE predictions as a function of
canopy maturity.

To better understand the synergistic and redundant effects of pre-
dictor interactions we produced interaction plots to understand the
impacts of combining proximal sensing predictors within a model
(Lundberg et al., 2020). Fig. 8 presents SHAP interaction plots for
models [PAR], [PAR, LST], [PAR, NDVI], and [PAR, LST, NDVI]. In
Fig. 8, SHAP attributions to PAR (SHAPpag) are plotted against PAR
values for each data point of the two seasons analyzed here. Each sub-
plot shows how these attributions change as model composition
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(predictor set) is modified. In addition, coloring data points by their
respective NDVI and LST values provides insights into how canopy
phenological state and canopy temperature / physiological controls
impact these attributions.

Fig. 8a shows that when only PAR is considered in the modeling
process, SHAPppR increases approximately linearly with increasing PAR
across a wide range of PAR values. At the highest PAR values the at-
tributions show non-linear shifts due to the inability of PAR alone to
capture surface energy partitioning and water use across the wide range
of phenological variability evaluated here (see Fig. 1f). This demon-
strates the limitation of PAR as a single predictor used to estimate LE,
despite the importance of solar energy input to surface energy exchange.

Figs. 8b and 8c show the same SHAPpag vs PAR dynamic, but for
models that add one of the proximal sensing predictors, LST (Fig. 8b)
and NDVI (Fig. 8c). In each case the data points are colored according to
the value of the proximal remote sensing variable used in the model.
Both of these models show an increase in SHAPpag with PAR as would be
expected with any ML model containing PAR as a predictor. The [PAR,
NDVI] model (Fig. 8c) shows a wider range of variability in SHAP values
for PAR, with that variability under both low and high PAR values
clearly driven by changes in surface vegetation cover (coloration). The
widest range of SHAPpag variability is seen at the largest PAR values,
with these SHAP attributions increasing with increasing NDVI. In gen-
eral the slope of the SHAPpag vs PAR relationship increases as NDVI
increases.

For the [PAR, LST] model (Fig. 8b) little variability is seen in PAR
values less than 1000 [pmol/mz/s] which most commonly correspond to
either early or late day time periods, or cloudy conditions. Under con-
ditions associated with the peak of the day when the canopy is strongly
illuminated by solar radiation the addition of LST to the model allows for
two distinct dynamics, one in which very high LST conditions cause a
reduction in SHAPppgr, with surface temperatures less than approxi-
mately 35 °C resulting in the highest SHAPpaR attributions. This strong
deviation in SHAP attributions to PAR as LST approaches the highest
values seen in the dataset implies that physiological control imposed
during conditions of canopy water stress result in energy partitioning by
the canopy (increasing Bowen ratio) when energy inputs are highest.

Adding both proximal sensing variables to the predictor set with PAR
results in a model that performs better than any two-predictor model,
capturing 81 % of the variability in LE, relative to 78 % for [PAR, NDVI]
and 68 % for [PAR, LST] (see Figs. 3,4 and Tables 2-4). The [PAR, NDVI,
LST] model exhibits large variability in SHAPpag at both low and high
values of PAR, with clear broad patterns imposed by the phenological
information contained in NDVI, and regions of sharp reduction in SHAP
attribution in PAR for LE prediction when the land surface is extremely
warm (i.e. > 35°C).

In order to better understand the role of remotely sensed LST on
model structure and predictions, Fig. 9 provides an analogous figure to
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Fig. 7. SHAP violin summary plots for ML models: (a) [PAR]; (b) [PAR, LST]; (c) [PAR, NDVI]; and (d) [PAR, LST, NDVI]. Coloration from blue to red indicates

increasing values of the predictor variables.
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their respective NDVI values.

that of Fig. 8, but examining the SHAP attributions to LST (SHAP;g7) as a
function of LST. Fig. 9a shows an LST-only model ([LST]), with the
[PAR, LST] model presented with data points colored by NDVI value in
Fig. 9b and colored by VPD value in Fig. 9c. The three-predictor model
[PAR, LST, NDVI] attributions are presented with data colored by NDVI
value in Fig. 9d and colored by VPD value in Fig. 9e.

Across all three levels of model complexity positive model attribu-
tions to LST are found within an LST range that spans 20-40 °C, when
positive temperatures are strongly associated with enhanced canopy
transpiration and photosynthesis.

SHAP; st becomes negative at lower temperatures for [PAR, LST]
(Fig. 9b,c), between 30 and 40 °C, relative to the [PAR, LST, NDVI]
model (Fig. 9d,e) which maintains positive LST attributions until 40 °C.
Providing the model with the information on canopy development and
density contained in NDVI allows the model to utilize LST more effec-
tively for the range of contrasting conditions spanning bare soil to dense
closed canopy. Adding NDVI as a predictor also results in larger positive
attributions to LST, particularly when NDVI is indicative of a closed
canopy (i.e. > 0.6) and LST is indicative of the canopy receiving greater
energy to drive LE. The model that includes NDVI produces negative LST
attributions at LST values approximately greater than 40 °C, where VPD
values reach levels likely to cause stomatal closure and reductions in LE

10

(Fig. 9e). Adding NDVI as a predictor allows the model freedom to use a
wider range of attribution magnitudes to LST dependent on the status of
the land surface, from bare soil to densely vegetated.

Intermediate NDVI values in the 3-predictor model have primarily
positive SHAP; g7 values when NDVI is included (Fig. 9d), in contrast to
the [PAR, LST] model in which these canopy states, which may allow a
partial view of the soil and therefore have higher LST, are confused with
closed-canopy stress states. Likewise, without having knowledge of
canopy phenology the [PAR, LST] model produces negative SHAP s for
intermediate to high VPD values greater than 2.5 kPa. When NDVI is
included in the model many of these higher VPD conditions result in
positive attributions as they allow for higher LE when the canopy is not
stressed. Figure S5 presents SHAP attributions to NDVI (SHAPnpyr)
plotted against NDVI values for each data point for [NDVI], [PAR, NDVI]
and [PAR, LST, NDVI] models.

In summary, the SHAP-based interpretability analysis presented here
highlights the value of continuous proximal remote sensing variables
like NDVI and LST in improving ML-based LE predictions. While PAR
remains the single-most important predictor, NDVI and LST play crucial
roles allowing information on downwelling radiation to be utilized
appropriately throughout the vegetation growth cycle and during con-
ditions when plant physiology constrains gas exchange. This analysis
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respective VPD values.

underscores the importance of proximal remote sensing variables in
addressing the limitations of traditional meteorological models by
enhancing the model’s sensitivity to rapid changes in crop phenology
and surface temperature.

4. Conclusions

We present a systematic evaluation of the utility of machine learning
to capture the variability in latent energy flux in managed agricultural
systems across multiple growing seasons utilizing both meteorological
and in-situ proximal remote sensing of NDVI and LST. We developed and
rigorously cross-validated 64 sets of ML models that span predictor sets
utilizing all combinations of one to six variables, including four envi-
ronmental variables and two proximal remote sensing variables (NDVI
and LST).

The findings of the study emphasize the importance of carefully
selecting predictors or sets of predictors for surface energy balance
estimation. For example, the performance of two-predictor models, such
as [PAR, LST] and [PAR, NDVI], substantially improved performance
over single-predictor models, and performed almost as well as the best
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three- and four-predictor models. While predictive performance gener-
ally increases with model complexity, careful selection of predictor sets
can result in parsimonious models that leverage synergistic information
for predictions of land-atmosphere interactions.

This study highlights the utility of proximal remote sensing pre-
dictors for estimating LE, particularly for models that include only two
or three predictors: [PAR, LST], [PAR, NDVI], [PAR, LST, NDVI]. These
relatively simple models utilizing only 2-3 predictors capture between
68 % and 81 % of the variability in half-hourly latent energy flux across
two growing seasons of a Midwest US soybean system. These predictors
provide the machine learning models with information about canopy
phenology and plant physiological status that is not available in mete-
orological observations alone. An explainability analysis provided
insight into how the ML models utilize the information in remote sensing
observations, allowing the models to use available information in bio-
physically meaningful ways. This work points to the need to evaluate ML
models developed with weather and proximal sensing information to
estimate crop water use in other crop species and climate contexts.
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