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ARTICLE INFO ABSTRACT
Keywords: The application of solid waste in filling mining has become an essential direction for developing
Green filling green mines. This study prepared mixed aggregates using superfine tailings (ST), fly ash (FA), and

Superfine tailings
Machine learning
Solid waste

Mix proportion design

silica fume (SF), and developed a solid waste-based superfine tailings cemented paste backfill
(SCPB) by using steel slag (SS), granulated blast furnace slag (GBFS), and desulfurization gypsum
(FDG) as binder. The modified Andreasen-Andersen (MAA) model was used to optimize the
proportion of mixed aggregates. Response surface method (RSM) experiments were conducted to
investigate the development of the compressive strength of SCPB. Various microscopic testing
methods were employed to reveal its hydration mechanism, and a machine learning method was
used to construct an optimization model for the mix proportion of SCPB. The results indicate that
the residual sum of squares (RSS) decreases with increasing ST dosage. When SF, FA, and ST are
mixed in a mass ratio of 10:20:70, i.e., m(SF):m(FA):m(ST) = 10:20:70, RSS reaches a minimum
RSS of 153.07, at which the mixed aggregate exhibits the lowest packing density. The
compressive strength of SCPB increases with the addition of binder and slurry concentration at all
curing times, and first increases then decreases with the increase of SF dosage. SS, GBFS, and FDG
interact to form ettringite (AFt) and calcium silicate hydrate (C-S-H) and other hydration prod-
ucts, which are the fundamental source of SCPB strength. Additionally, the intelligent filling mix
proportion design model developed in this study, which integrates the Sparrow Search Algorithm
(SSA), Extreme Learning Machine (ELM), and Genetic Algorithm (GA), can rapidly and accurately
obtain the optimal backfill mix proportion under actual engineering constraints, with an accuracy
of over 90 %. The relevant research provides methodological guidance for the efficient recycling
and utilization of solid waste materials, as well as the efficient application of cemented filling
technology.

1. Introduction

Cemented paste backfill mining technology involves mixing tailings generated during mineral processing with cement-based binder
to prepare backfilling materials, which are then injected into abandoned mine voids [1-3]. This technology enhances mining safety
while effectively addressing ground subsidence and environmental pollution issues, aligning with the development direction of green
mining. However, as mineral processing technology continues to mature, tailings particles are becoming increasingly fine and forming
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superfine tailings(ST), which reduces the strength of cemented backfill materials using tailings as aggregate, leading to mine safety
issues [4-6]. Meanwhile, cement, as the main binder, is expensive, and its production process is accompanied by high pollution and
high carbon emissions, which not only increases the cost of backfilling but also fails to align with the current global concept of clean
and low-carbon production [7-9]. Therefore, under the premise of ensuring the strength of the backfill, improving the utilization rate
of superfine tailings and developing low-carbon binders that can replace cement have become urgent issues in the field of backfilling
mining.

Superfine tailings have fine particle sizes, poor dispersibility, and low filling strength. To solve these issues, scholars have con-
ducted extensive research. Based on the strength test data of superfine tailings cemented backfilling materials, Fu et al.[10] proposed
using the limiting volume concentration to characterize the group properties of materials, starting from the microstructure of the filling
slurry. Combining the relationship between the water-cement ratio and strength in the experiment, they constructed a three-variable
strength calculation model, providing a basis for the design of the proportion of superfine tailings backfilling slurry. Rao et al.[11]
conducted in-depth research on the application of fly ash as an admixture in tailings backfilling, clarified the mechanism of fly ash in
enhancing the strength of tailings backfill, and discovered the unique advantages of fly ash in tailings backfilling. Li et al.[12] used
superfine tailings as backfill aggregate and used coal slag to replace part of the cement-based materials to reduce backfilling costs while
keeping the strength properties of the cemented tailings backfill. The study showed that the addition of coal slag can improve the slurry
fluidity and backfill strength, and effectively reduce the amount of cement used and solid waste emissions. Zou et al.[13] improved the
strength and ductility of superfine tailings cemented paste backfill through the synergistic use of polypropylene fibers and silica fume,
providing an effective method for the recycling of superfine tailings.

The above research has conducted useful explorations into the recycling of superfine tailings and proven their application potential,
but the high costs and environmental problems associated with the use of cement as a cementitious material still remain. Tian etal.[14]
conducted a study on the optimal mix proportion of all-solid waste cemented paste backfill materials using the response surface
method, finding that the water-to-cement ratio had the most significant effect on the performance of the backfill materials. The optimal
mix proportion was determined to be a water-to-cement ratio of 0.39, water glass modulus of 1.38, and alkali equivalent of 4.7 %, and
the effectiveness of the response surface method in optimizing the mix proportion was verified. Yang et al.[15] prepared solid
waste-based binder using industrial solid wastes such as steel slag, blast furnace slag, and desulfurization gypsum, studied their
application in low-carbon concrete, and demonstrated the feasibility of all-solid waste low-carbon concrete filling. Hu et al.[16]
proposed a cement-solid waste composite binder system and optimized the mix ratio of tailings wet shotcrete using the response
surface method and intelligent model, proving that the composite binder system can effectively improve concrete strength.

Currently, there is little research on solid waste-based binders and backfilling materials, especially those using superfine tailings as
aggregates. Furthermore, research on the optimization of their filling proportions and strength formation mechanisms is still imma-
ture. Meanwhile, solid waste materials such as fly ash and silica fume are rich in silicate components. These active minerals not only
optimize aggregate gradation but also effectively promote hydration reactions, thereby significantly improving the strength and
stability of the backfilling material. For example, Wen et al.[17] used fly ash and silica fume as admixtures and guided the optimization
of particle gradation for ultra-high-performance concrete (UHPC) using the modified Andreasen-Andersen (MAA) model. They found
that when the silica fume content was high, the bulk density of UHPC could be significantly improved. They further found that fly ash
and silica fume react in an alkaline environment to form more gel, which improves the density and compressive strength of UHPC
materials. Therefore, the use of these active minerals to prepare superfine tailings fillers also has high research value.

Machine learning is increasingly being applied in the field of backfill mining, enhancing the efficiency and safety of mining op-
erations. Particularly in the prediction of backfill material strength, machine learning models combined with optimization algorithms
have found widespread application. Hu et al. utilized machine learning models to study the mechanical properties of SCPB, with
experimental results indicating that machine learning can effectively predict its strength, providing technical support for the resource
utilization of tailings [18]. Semudiamhen et al. combined machine learning with infrared radiation (IR) indicators to improve the
prediction accuracy of the unconfined compressive strength (UCS) of backfill materials [19]. Jooshaki et al. discussed the feasibility of
machine learning in the utilization of mineralogical data in the mining and mineral industry, identified challenges in data quality and
methodological diversity in this field, and pointed the way forward for the intelligent development of the mining industry [20]. Liu
et al. pointed out that in open pit mining, machine learning can enhance ore body knowledge by analyzing measurement-while-drilling
(MWD) data, which is critical for predicting geological conditions and optimizing mining operations [21]. Shah et al. demonstrated
that machine learning technology combined with backfilling techniques using hardened backfill materials can improve mineral re-
covery rates in potash mining [22]. The above research demonstrates the feasibility of applying machine learning technology in the
mining field and provides insights for establishing a backfill strength prediction model based on machine learning in this study.

Based on this, this study uses steel slag(SS), granulated blast furnace slag(GBFS), desulfurization gypsum(FDG) to prepare solid
waste-based binder, optimizes the mix design of superfine tailings, silica fume(SF) and fly ash(FA) according to the MAA model, in-
vestigates the mechanical properties and hydration mechanism of solid waste-based superfine tailings cemented paste backfill(SCPB)
by combining various microstructural characterization methods, and constructs a strength prediction model and proportion optimi-
zation model of SCPB based on machine learning methods. The novelty of this study lies in the development of an all-solid-waste binder
for superfine tailings backfill and the integration of a modified particle packing model with advanced machine learning for mix
proportion optimization. This comprehensive approach has not been reported in previous studies. Specifically, unlike prior works, we
utilize industrial wastes (steel slag, blast furnace slag, desulfurization gypsum) as the sole binder components and combine Andreasen-
Andersen model-based gradation optimization with a hybrid intelligent algorithm to achieve over 90 % prediction accuracy for backfill
strength. These novel contributions advance the methodology and application of green mining backfill.
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2. Materials and methods
2.1. Materials

2.1.1. Binder

The three-component composite binder used in this study is prepared from SS, FDG, and GBFS. SS and GBFS are provided by Ansteel
Group Corporation in China, while FDG is sourced from a power plant in Northeast China. All raw materials must undergo crushing to
activate their hydration activity. After grinding in a ball mill, the specific surface areas of the materials are Sss= 455 m?/kg,
Srpg= 422 m?/kg, and Sgprs= 335 m?/kg. The composition of the three raw materials is analyzed by XRF and presented in Table 1.
Based on extensive exploratory experiments, the optimal ratio of SS:GBFS:FDG for the solid waste-based binder is 35:40:25.

2.1.2. Aggregate

Due to the extremely low strength of the ST-prepared backfilling body, this study prepares a mixed aggregate by combining ST with
SF and FA, which possess certain activity. The ST used in the experiment originates from a gold mine in Guizhou Province, SF is sourced
from a silicon material production company in Gansu Province, and fly ash is an industrial by-product generated from coal combustion
at a power plant in Gansu Province. The XRF analysis results of the 3 aggregates are shown in Table 2. As shown in Table 2, the activity
index(Ca0%/Si02%) of ST and SF is low, with activity rates of 0.031 and 0.005, respectively, indicating that they are inert materials.
The main components of FA are SiOz, Al-0s, and CaO, accounting for approximately 92 %, with an activity index of 0.467, indicating
potential activity.

2.2. Methods

2.2.1. Aggregate proportion optimization

By scientifically and reasonably improving the particle size distribution to form the most dense packing density of mixed aggre-
gates, the objective of aggregate proportion optimization can be achieved. The MAA model proposed by Dinger and Funk was used to
carry out aggregate proportion optimization [23].

D? - DI,
P(D) =~ —min_ 1
( ) Dtrznax_Dgﬂn W

In Eq. (1), D is the particle size, pm; P is the particle content, %; Dy ax is the maximum particle size, pm; Dpjp is the minimum particle
size, pm; q is the distribution modulus, whose value depends on the ratio of large particles to fine particles in the system, and the more
coarse particles there are, the larger q is.

Using MATLAB software to model the MAA model, the least squares method is employed to adjust the proportion of raw materials
in the dry mixture. The deviation between the synthesis curve function of the mixture under different raw material proportions and the
target curve function of the MAA model is calculated, and the residual sum of squares (RSS) is used for characterization [24]. The RSS
calculation formula is as follows.

n
RSS = (Pux(Df"") — Pra(D}))* @
=1

In Eq. (2), Ppix and Py, are the mixed material synthesis curve function and the MAA model target curve function, respectively; n
denotes the number of parts into which the function is divided when calculating RSS; i denotes each part when calculating RSS;
andD!"'denotes the particle size interval of the division.

The cumulative size distribution of aggregate particles is shown in Table 3. From Table 3, Dyax= 756.45 pm, Dpjn= 0.19 pm. The
distribution modulus q= 0.23 is taken to construct the target curve of MAA model as shown in Fig. 1. The optimal grain size curves of
mixed aggregates are obtained using the MMA model and shown in Fig. 1, and the deviations between the synthetic curve functions of
different mixed aggregates and the target curve functions of the MAA model are analyzed, and 10 sets of results are obtained and
shown in Table 4.

2.2.2. Experimental design
To investigate the effects of various factors on the macro strength of SCPB, obtain a backfilling proportion that satisfactorily meets
strength requirements, reduce the number of experiments, and improve experimental efficiency, this study employed the response

Table 1

Chemical composition of SS, GBFS, and FDG.
Content SiOqy CaO MgO Fe,03 Al,03 SO3 K,0 MnO
GBFS 28.52 % 40.52 % 7.86 % 2.54 % 13.08 % 1.68 % 0.39 % 0.65 %
SS 21.00 % 37.98 % 8.38 % 18.93 % 6.72 % 0.72 % 0.21 % 3.01 %
FDG 4.87 % 47.84 % 219 % 0.80 % 1.27 % 40.22 % 0.35 % 0.05 %
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Table 2
Chemical composition of ST, FA, and SF.
Content Si0, CaO MgO Fe,03 Al,03 NayO K20 other
ST 67.77 % 3.42% 4.79 % 2.26 % 14.47 % 0.14 % 0.21 % 6.93 %
FA 57.47 % 6.88 % 0.78 % 4.59 % 26.82 % 0.82 % 1.15% 1.48 %
SF 94.12 % 0.51 % 0.33 % 0.45 % 0.37 % 0.18 % 1.85% 1.18 %
Table 3
The cumulative size distribution of aggregate particles.
D/pm P/%
SF FA ST
0.19 0 0 0.1
0.77 8.9 2.4 5.4
1.45 27.6 3.7 7.9
2.75 48.4 4.5 11.5
5.92 64.0 12.9 19.7
11.21 75.6 34.2 27.9
18.66 87.1 55.4 37.2
35.33 97.8 77.5 57.1
66.89 100.0 95.2 81.2
126.65 100.0 100.0 94.9
756.45 100.0 100.0 100.0
SF
100 F——fa
| —— ST

—ao— MAA target curve
| —e—Optimum proportioning

80
60
40

20

Cumulative volume / %

1072 10! 10° 10" 10% 10°
Particle size / pm

Fig. 1. Particle size distribution curve and target curve of the MAA model.

Table 4

Mixed aggregate proportion based on the MAA model

and RSS.
m(SF):m(FA):m(ST) RSS
10:40:50 163.63
15:35:50 164.55
20:30:50 166.11
10:30:60 158.26
15:25:60 159.16
20:20:60 160.72
10:20:70 153.07
15:15:70 153.94
20:10:70 155.50
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surface method(RSM) for experimental design, using Design-Expert 13 software [25,26].

Based on extensive preliminary exploratory experiments, the proportion of fly ash in the aggregate is set at 10 %20 %. When the
slurry concentration is 68 %-76 % and the solid waste-based binder dosage is 6 %10 %, the fluidity and strength of the SCPB slurry
can satisfy the technical requirements. Based on this, this study uses SF dosage, binder dosage, and slurry concentration as independent
variables (denoted as X;, X, and X3, respectively), and the 7d 14d, and 28d uniaxial compressive strength (UCS) of SCPB as response
values (denoted as Yj, Yo, and Ys, respectively), to conduct RSM experiments. The specific experimental scheme is shown in Table 5.

2.2.3. Testing methods

(1) UCS. Grind the side of the cured test specimen to a smooth surface and place it centrally in the pressure machine fixture,
ensuring that the compressed surface remains parallel to the loading device. Set the loading rate to 1 mm/min. Start the pressure
machine to conduct the strength test, and use the average value of the test results from three specimens as the strength result for that
specimen. The equipment used is the American HUMBOLDTHM-5030 pressure testing machine, with a maximum loading capacity of
50 kN.

(2) SEM. Prepare SCPB samples with dimensions of 1 cm x 1 cm x 0.5 cm for SEM testing. When the specified curing time is
reached, the specimens are immersed in anhydrous ethanol solution for 24 h to halt hydration, then placed in a vacuum drying oven at
40°C to remove residual anhydrous ethanol, and finally undergo gold sputtering treatment. The microstructure of the SCPB is observed
using a scanning electron microscope. The equipment used is the VEGA3-type scanning electron microscope manufactured by TESCAN
of the Czech Republic.

(3) XRD. The samples are crushed into small pieces no larger than 2 mm, soaked in anhydrous ethanol for 2 h, then dried in a
vacuum at 40°C, manually ground into powder, sieved through a 200-mesh standard sieve, and the sieved material is subjected to XRD
analysis. The equipment used is the XRD-7000 X-ray diffractometer from Shimadzu Corporation, Japan.

(4) FTIR. The sample is vacuum dried at 40°C for 24 h until all moisture is completely evaporated. The dried sample is ground into a
fine powder, passed through a standard 80-mesh sieve, and placed in an FTIR instrument. The chemical structure and functional
groups of the sample are detected using a Nicolet iS50 Fourier transform infrared spectrometer from Thermo Fisher Scientific in the
United States.

3. Results and discussion
3.1. Experimental results and response model

3.1.1. Experimental results
The RSM experimental results are shown in Table 6.

3.1.2. RSM model

Using Design-Expert 13 software, a multiple regression analysis is performed on the experimental results of 17 groups to construct a
quadratic polynomial regression equation for UCS as a function of SF dosage, binder dosage, and slurry concentration, as shown in Eqs.
(3) to (5). Fig. 2 presents a comparison between the experimental values and predicted values of UCS calculated based on the
regression equation. From Fig. 2, it can be observed that the experimental values and predicted values show a high degree of
agreement, indicating that the strength model is effective.

Y] =9.2044 + 0.0204X; + 0.1346X, — 0.2738X5 — 0.0016X; X,

3
++0.0008X; X5 + 0.0003X,X; — 0.0023X2 — 0.0058X> + 0.0019X2(R? = 0.9863) @
Y, = 4.5538 + 0.0053X; + 0.3763X, — 0.1537X5 — 0.0016X, X, @
+0.0009X; X5 — 0.0025X,X; — 0.0019X2 — 0.0085X> + 0.0012X2(R? = 0.9842)

Y; = 4.6507 + 0.0691X; + 0.6066X, — 0.1946X; — 0.0041X, X, ©

+0.0009X, X3 — 0.0035X,X3 — 0.0034X> — 0.0144X3 + 0.0015X2(R* = 0.9853)

3.1.3. Model verification
To verify the validity of the RSM model, the above quadratic polynomial regression equations are analyzed by ANOVA [27,28], and
the results are shown in Table 7. Table 7 shows that the P-value of the significance test of the 3 response models is less than 0.0001

Table 5
Mixed aggregate proportion based on the MAA model and RSS.
Factor Level code
-1 0 1
SF dosage (X3, %) 10 15 20
Binder dosage (X2, %) 6 8 10

Slurry concentration (X3, %) 68 72 76
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Table 6
RSM Experimental results.
Number Factor Measured values/MPa Predicted values/MPa
X, X, X3 Y, Y, Ys Yp* Yo+ Ya*
1 10 6 72 0.421 0.820 0.991 0.405 0.815 1.010
2 15 8 72 0.586 0.986 1.339 0.584 0.984 1.340
3 15 6 68 0.457 0.857 1.120 0.469 0.847 1.090
4 15 8 72 0.577 0.976 1.342 0.584 0.984 1.340
5 10 10 72 0.600 1.000 1.365 0.601 0.990 1.350
6 10 8 68 0.527 0.928 1.225 0.531 0.943 1.230
7 15 8 72 0.580 0.980 1.328 0.584 0.984 1.340
8 15 10 76 0.730 1.040 1.430 0.718 1.050 1.460
9 10 8 76 0.570 0.969 1.307 0.581 0.968 1.300
10 20 8 68 0.509 0.909 1.208 0.498 0.909 1.220
11 15 8 72 0.586 0.986 1.337 0.584 0.984 1.340
12 15 8 72 0.592 0.992 1.334 0.584 0.984 1.340
13 15 6 76 0.543 0.943 1.267 0.548 0.948 1.260
14 20 10 72 0.555 0.955 1.315 0.571 0.960 1.290
15 20 6 72 0.439 0.839 1.105 0.438 0.849 1.120
16 15 10 68 0.634 1.034 1.395 0.629 1.030 1.410
17 20 8 76 0.620 1.020 1.365 0.616 1.010 1.360

(3)0.75 (b)
1.05 Qo
0.70 -
& 0.65F £ 1.00 -
= 9 =
) 9 7 0?2
© 0.60 - 9 0 0.95 °®
2055
g o> £090 °
Bosof 3
< <
) 0 085 [ I
©04s)
°
040+ O 0.80
0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.7 0.80 0.85 0.90 0.95 1.00 1.05
Measured UCS/MPa Measured UCS/MPa
(c)1.5
)
14+ 2
[
g
@ 13rF
Q
=}
T2t
=
g )
LIy °
1.0 2

1.0 1.1 1.2 1.3 1.4 1.5
Measured UCS/MPa

Fig. 2. Comparison between measured values and calculated values: (a) 7d UCS; (b) 14d UCS; (c) 28d UCS.

(highly significant), which indicates that the regression models are highly credible. The minimum value of the F-value of the 3 RSM
models is 48.49(much higher than Fj95(3,9)= 3.86), indicating that the regression results are highly significant and statistically
significant. The correlation coefficients : (e.g., Egs. 3-5) are 0.9863, 0.9842, and 0.9853 converging to 1, indicating that the model
fits well, and the error between experimental and predicted values is small, which is able to adequately respond to the relationship
between the response values and the various effect factors. Among the factors, the single factor items: Xo (binder dosage, P < 0.01) and



Table 7

Analysis of RSM model.
Variant source Square sum Average square F-value P-value

Y1 Y2 Y3 Y1 Yo Y3 Y1 Y Y3 Y1 Y2 Y3

Item 0.0900 0.0674 0.2126 0.0100 0.0075 0.0236 56.03 48.49 51.98 < 0.0001 < 0.0001 < 0.0001
Xy 0.0000 0.0000 0.0014 0.0000 0.0000 0.0014 0.01 0.04 3.01 0.9116 0.8521 0.1261
Xo 0.0543 0.0406 0.1306 0.0543 0.0406 0.1306 304.09 262.87 287.32 < 0.0001 < 0.0001 < 0.0001
X3 0.0141 0.0074 0.0221 0.0141 0.0074 0.0221 79.10 48.11 48.53 < 0.0001 0.0002 0.0002
X1 Xo 0.0010 0.0010 0.0067 0.0010 0.0010 0.0067 5.56 6.63 14.74 0.0505 0.0368 0.0064
X1x3 0.0012 0.0012 0.0014 0.0012 0.0012 0.0014 6.46 7.97 3.09 0.0385 0.0256 0.1220
Xox3 0.0000 0.0016 0.0031 0.0000 0.0016 0.0031 0.14 10.38 6.86 0.7220 0.0146 0.0345
X12 0.0138 0.0090 0.0300 0.0138 0.0090 0.0300 77.50 58.37 65.97 < 0.0001 0.0001 < 0.0001
Xo2 0.0022 0.0049 0.0139 0.0022 0.0049 0.0139 12.49 31.70 30.68 0.0095 0.0008 0.0009
X32 0.0038 0.0015 0.0026 0.0038 0.0015 0.0026 21.07 9.51 5.62 0.0025 0.0177 0.0496

3 NH A

S£1502 (§20Z) €T SIPMAIDI UONINLSUOD UL SAIPTIS ISDD
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X3 (slurry concentration, P < 0.01) had the most significant effect on Y(UCS). The interaction factor item: X; x5 (interaction between
SF dosage and binder dosage, P < 0.01) has the most significant effect on Y3 (28d UCS).

3.2. UCS analysis

3.2.1. The effect of a single factor on UCS

(1) Binder dosage

When the slurry concentration is 72 % and the SF dosage is 15 %, the relationship between binder dosage and UCS at curing time is
shown in Fig. 3(a). From Fig. 3(a), the UCS of SCPB at different curing times increases with the increase in binder dosage. When the
binder dosage increases from 6 % to 10 %, the 7d UCS, 14d UCS, and 28d UCS increase by 35 %, 16 %, and 22 %, respectively.
Combined with the F-value of X5 in the RSM model for the 7d in Table 7, it indicates that the binder dosage has a significant effect on
early strength. Binder reacts with water during the early stages of hydration to form ettringite (AFt) and C-S-H, which provide early
strength. These hydration products grow within the pores of the material, effectively filling the space previously occupied by free water
and reducing the porosity of the aggregate, thereby providing a compact and robust structure for SCPB. An increase in the binder
dosage leads to an increase in hydration products, thereby enhancing the UCS of SCPB.

(2) Slurry concentration

When the binder dosage is 8 % and the SF dosage is 15 %, the relationship between slurry concentration and UCS at different curing
times is shown in Fig. 3(b). From Fig. 3(b), the UCS of SCPB at different curing times increases gradually as the slurry concentration
increases. The higher the slurry concentration, the more significant the increase in UCS. When the slurry concentration increases from
68 % to 76 %, the 7d, 14d, and 28d UCS of SCPB increase by 15 %, 6 %, and 8 %, respectively. This indicates that slurry concentration
has a significant effect on the early UCS of SCPB, consistent with the analysis results of the P-value in Table 7. Slurry concentration
directly determines the water content in the reaction system. During the early stages of hydration, when hydration products are scarce,
the slurry concentration directly affects the structural density of SCPB (higher concentration results in lower water content and a more
dispersed structure), thereby affecting its early strength.

(3) SF dosage

When the binder dosage is 8 % and the slurry concentration is 72 %, the relationship between SF dosage and UCS at different curing

1.6 1.6
@16 = a2 OV (= T s s
*///+—777*’* '_/_&/"
2t 12}
| e T®] o e T%
2. ol B <. B H D
7 0.8 S08f
O O
=] || ol e S . [ I I I A
0.4 - 0.4 -
0.0 1 1 1 1 1 0.0 1 1 1 1 1
6 7 8 9 10 68 70 72 74 76
Binder dosage/% Slurry concentration/%
1.6
© [ J7d[J14d[[_]28d
e & &—
12t [ T
SO = I S
7 0.8r
S
o T T [ 1 | 7% e
0.4 H
0.0 1 1 1 1 1

10 12.5 15 17.5 20
SF dosage/%

Fig. 3. UCS development patterns under single factor effects.
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times is shown in Fig. 3(c). From Fig. 3(c), the UCS of SCPB at all curing time first increases and then decreases with increasing SF
dosage. When the SF dosage is around 15 %, the UCS of SCPB at all curing times reaches its maximum, indicating that an appropriate
SF dosage is beneficial for improving UCS. When the SF dosage increases from 10 % to 15 %, the UCS gradually increases. This is
because an appropriate amount of fine-grained SF can fill the pores formed by coarse aggregates, which is conducive to improving the
packing density of SCPB and thereby improving UCS. When the SF dosage is increased from 15 % to 20 %, UCS gradually decreases.
This is because although fine aggregates can fill pores, excessive SF increases the porosity of SCPB, thereby reducing its packing
density.

3.2.2. The effect of coupling factors on UCS

(1) SF dosage and slurry concentration

Fig. 4 presents the effect of SF dosage and slurry concentration on the 7d UCS of SCPB. Within the SF dosage range of 10 %-20 %,
the 7d UCS consistently increases with increasing slurry concentration. When the slurry concentration is 68 %-76 %, the 7d UCS first
increases and then decreases with increasing SF dosage. When the SF dosage is 10 % and the slurry concentration increases from 68 %
to 76 %, the 7d UCS of SCPB increases by 9.45 %. When the SF dosage is 15 % and the slurry concentration increases from 68 % to
76 %, the 7-day UCS of SCPB increases by 14.56 %. This indicates that when the aggregate gradation is optimal, increasing the slurry
concentration helps enhance early strength development. This is because, during the early stages of hydration, strength primarily
originates from the support provided by the aggregates. Optimal gradation improves aggregate packing density, thereby enhancing
early strength.

(2) Binder dosage and slurry concentration

Fig. 5 displays the effect of the coupled interaction between binder dosage and slurry concentration on the 14d UCS of SCPB. As can
be observed, the 14d UCS increases with both the binder dosage and slurry concentration, indicating that the interaction between the
dosage of the binder dosage and the slurry concentration exhibits a synergistic effect in enhancing strength. When the slurry con-
centration is 68 %, increasing the binder dosage from 6 % to 10 % results in a 21.58 % increase in 14d UCS. When the slurry con-
centration is 76 %, increasing the binder dosage from 6 % to 10 % results in a 10.82 % increase in 14d UCS. Thus, at lower slurry
concentrations, the increase in 14d UCS due to higher binder dosage is more significant. This is because at lower slurry concentrations,
the relative water content is higher, allowing the active components in the binder to react more thoroughly with water through hy-
dration, thereby forming hydration products more rapidly and significantly enhancing the compressive strength of SCPB during the
mid-curing stage.

(3) Binder dosage and SF dosage

Fig. 6 indicates the coupled effect of SF dosage and binder dosage on the 28d UCS of SCPB. The results show that when the SF
dosage remains constant, the 28d UCS increases gradually with the increase in binder dosage. When the binder dosage exceeds 8 %, the
rate of strength increase begins to slow down. This is because, in the later stages of the hydration reaction, the available water is
insufficient to support the excess binder in producing additional active components, leading to a slower rate of strength development.
When the binder dosage is 10 % UCS increases with increasing SF dosage, reaching a maximum at 14 % SF dosage, and then decreases
with further increases in SF dosage. This indicates that an appropriate SF dosage can optimize the aggregate grading, promote the
formation of a stable interlocking structure, and thereby form a more dense and uniform overall structure during the cementation
process, significantly enhancing the late-stage strength of SCPB.
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Fig. 4. The effect of SF dosage and slurry concentration on the 7d UCS of SCPB.
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Fig. 6. The effect of binder dosage and SF dosage on the 28d UCS of SCPB.

3.3. Microanalysis

3.3.1. SEM

The microstructure of SCPB is obtained using SEM, and the images are binarized using Image J software [29,30] to construct
two-dimensional and three-dimensional grayscale images of SCPB with a curing time of 28 d, as shown in Fig. 7. The internal
microstructure of SCPB mainly consists of pores, aggregate particles, and hydration products. Hydration products grow within the
porous structure formed by aggregate particles, continuously consuming and occupying the space occupied by free water, effectively
filling and bonding aggregate particles to form a high-strength microstructure. 4 groups of samples (1, 3, 11, and 16) from Table 5 are
selected for SEM microstructural analysis. In sample 1, a certain amount of short columnar AFt crystals (average length approximately
2 um) and loosely distributed C-S-H gel and flaky Ca(OH)= (CH) are observed, with large pores between aggregate particles. In sample
3, the number of hydration products increased significantly, with the average length of AFt crystals growing to 2-4 um. These crystals
are densely distributed with C-S-H in the pores, leading to a gradual reduction in pore number and size. In sample 11, the continuously
accumulating gel-like C-S-H binds AFt and aggregate particles together, giving the SCPB structure a dense characteristic. In sample 16,
under the synergistic action of C-S-H gel, AFt crystals, and other hydration products, the pores within the SCPB are fully filled.

Compared with sample 3, the microstructural images of sample 16 show almost no pores, with a smoother and more uniform three-
dimensional gray-scale structure, indicating a more dense structure. Under constant SF dosage and slurry concentration, the three-
dimensional grayscale images of sample 16 show a significant reduction in low-lying areas, indicating lower porosity and a more
dense structural characteristic. Compared with sample 1, although the aggregate packing density of sample 11 decreased, the 28d UCS
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Fig. 7. Microstructure: (a) Sample 1; (b) Sample 3; (c) Sample 11; (d) Sample 16.

increased from 0.991 MPa to 1.337 MPa, and the average grayscale value improved from 65.32 to 104.24 by increasing the binder
dosage. This indicates that a denser microstructure (due to more hydration products filling the pores) results in higher strength. This is
because the increased binder dosage directly enhanced the production of hydration products, effectively filling the pores, resulting in
higher density and improved mechanical properties.

3.3.2. XRD
The mineral phases of SCPB are shown in Fig. 8. Characteristic peaks of hydrated products such as hydrocalumite and AFt are

observed in samples with curing times of 7 d and 28 d. Characteristic peaks of dehydrated gypsum(CaSO4-2H50), quartz, calcite,
dolomite, C,S, RO phase, and C3S are also observed in the raw materials [31,32]. The intensity of the characteristic peaks of dehy-
drated gypsum, CgS, and C3S decreases gradually with increasing curing age, indicating that these hydrolyzable substances are
continuously consumed. Compared to the 7d-cured samples, the intensity of the hydrocalumite diffraction peak (260 = 12.5°) and the
AFt diffraction peaks (20 = 25°, 28°) in the 28d-cured samples significantly increased. Additionally, a more pronounced AFt diffraction
peak appeared near 20 = 8.5°, indicating an increasing amount of hydration products, which is a key factor contributing to the
improvement of 28d UCS.

Compared to sample 3, sample 16 exhibited significantly enhanced diffraction peaks of hydrocalumite near 26 = 12.5° and AFt
diffraction peaks near 20 = 25° and 28° after increasing the binder dosage. Therefore, the strength of sample 16 is significantly
improved. The XRD patterns of sample 11 show a significant increase in hydration products compared to sample 1 (as evidenced by the
enhanced intensity of the AFt diffraction peaks near 26 = 8.5°, 25°, and 28°, and the hydrocalumite diffraction peak near 26 = 12.5°),
resulting in higher strength. This is because increasing the binder dosage directly increases the amount of active components in the
hydration reaction, significantly enhancing the quantity of hydration products and strength in the sample.

It is worth noting that the AFt diffraction peak (20 ~ 8.5°) in the XRD pattern becomes much more pronounced at 28d than at 7d
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Fig. 8. XRD patterns of SCPB at different curing times: (a) 7d; (b) 28d.
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(nearly doubling in intensity), which quantitatively reflects an increase in AFt content.

3.3.3. FTIR

The FTIR results for SCPB with curing times of 7d and 28d are shown in Fig. 9. The absorption peaks at 3400 em ! and 1630 cm ™!
correspond to the asymmetric stretching vibration and bending vibration of the O-H bond in the crystalline water of the hydration
product, respectively [33]. Compared with the sample with a curing time of 7d, the transmittance of the above 2 absorption peaks is
significantly weakened at a curing time of 28d, indicating the formation of a large amount of crystalline water-rich material. The
absorption peak at 3630 cm™ corresponds to the stretching vibration of the O-H bond in dihydrate gypsum. The absorption peaks at
1435 cm™! and 875 cm™! correspond to the stretching vibration and bending vibration of the C-O bond, respectively [34]. This is
caused by the carbonization reaction of SCPB during the curing process. The absorption peaks at 1010 cm ™ and 470 cm ™! correspond
to the asymmetric stretching vibrations of the Si-O-Si bonds in C-S-H [35]. Si in GBFS is a typical network-forming element, primarily
forming Si-O bonds with oxygen, which then polymerize into SiOf tetrahedra, SiO-®" clusters, chains, and other polymerized products
of silicate anions, ultimately forming a three-dimensional network structure of glass. This network structure facilitates the formation of
a stable C-S-H gel network, significantly enhancing the density and stability of the filling material.

Compared to sample 3, sample 16 shows a decrease in the transmittance of absorption peaks at 3400 cm ™, 1630 cm ™}, 1010 cm ™},
and 470 crn_l, which represent hydration products, while the absorption peak at 3630 cm_l, which represents the reactant, signifi-
cantly increases. This indicates that dihydrate gypsum is gradually consumed, and hydration products gradually increase. This is
consistent with the XRD analysis results. Comparing the FTIR spectra of samples 1 and 11, despite a decrease in the packing density of
the mixed aggregate after reducing the SF dosage from 15 % to 10 %, increasing the binder dosage from 6 % to 8 % directly provided
more reactants for the hydration reaction, leading to an increase in hydration products (the transmittance of the characteristic peaks at
3400 cm™, 1630 cm™, 1010 cm™, and 470 cm™ in sample 11 was significantly lower than that in sample 1), thereby enhancing the
strength.

3.3.4. The formation mechanism of SCPB strength

This study utilized a ternary composite binder prepared from SS, GBFS, and FDG. SS serves as an important alkaline activator,
providing the necessary alkaline environment for hydration reactions and promoting the depolymerization and hydration of the silica-
alumina glassy structure in GBFS. FDG, as a sulfate activator, supplies a large amount of SOF during hydration reactions, reacting with
Ca®* and AI** in SS and GBFS to form AFt [36,37]. GBFS serves as the active component in the ternary composite cementitious system,
with its abundant amorphous glass phase conferring high potential activity [38-40]. Under the combined action of alkaline activators
and sulfate activators, the glass phase in the slag undergoes depolymerization, thereby providing active Si/Al groups for the hydration
reaction.

During the initial stage of the hydration reaction, various substances begin to dissolve and release ions. FDG provides Ca®" and SOF
(Eq. 6). C2S and CsS in SS both dissolve CH and generate a small amount of C-S-H (Egs. 7 and 8). As Ca** dissolves, the silicon-oxygen
tetrahedra and aluminum-oxygen tetrahedra in GBFS undergo depolymerization and repolymerization, dissolving in the form of [SiO4]
and [AlO4], respectively (Egs. 9 and 10). Additionally, under the action of OH’, octahedral AI(OH)g’ ions are dissolved, which are the
key units for forming AFt and can react with Ca?*, OH-, and SOZ to form AFt (Eq. 11). During the mid-stage of the hydration reaction,
hydration products gradually form. As large amounts of Ca®* dissolve and AFt is generated, [SiO4] and [AlO4] in GBFS continuously
polymerize with Ca2" and water molecules to form C-S-H (Egs. 12 and 13). In addition, when SO?{ is sufficient in the system, [AlO4]
reacts with SO to form AFt (Eq. 14). In the late stage of the hydration reaction, AFt crystals develop fully in the system, forming a
more slender needle-like structure that can fill the pores, effectively reducing the porosity of SCPB. Concurrently, the abundant for-
mation of C-S-H, with its dense network structure, further binds the aggregates and hydration products in the SCPB. This bonding
structure formed by the synergistic action of AFt and C-S-H significantly enhances the density and mechanical properties of the SCPB.
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Fig. 9. FTIR spectra of SCPB with different curing times: (a) 7d; (b) 28d.
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4. Machine learning-based proportion design for SCPB

In this research, MAA is used to optimize particle size distribution to improve packing density, RSM is employed to design and
analyze the experiments efficiently, Extreme Learning Machine (ELM) is chosen for its fast learning capability to model UCS, Sparrow
Search Algorithm (SSA) is applied to fine-tune the ELM hyperparameters, and Genetic Algorithm (GA) is utilized to invert the model for
optimal mix proportions.

4.1. Construction process of the machine learning prediction model

The SSA and GA are both random global search optimization methods developed based on biological systems, capable of finding
optimal solutions to complex nonlinear problems [41,42]. ELM is a single-layer feedforward neural network based on randomization,
featuring fast learning speed, high accuracy, and ease of implementation, making it a powerful tool for multi-variable nonlinear
modeling [41,42]. This study uses SSA to optimize the hyperparameters of ELM, constructs an SSA-ELM model for predicting the
strength of SCPB, and then employs GA to perform inverse optimization on the SSA-ELM model under a given target strength to identify
the optimal mixture proportion. Additionally, support vector regression(SVR), XGBoost, and random forest(RF) [43-46], which are
similar to ELM, are used as controls. The specific modeling steps are as follows.

Using the results of 51 RSM experiments as the data set, the SF dosage, binder dosage, and slurry concentration in the data set are
used as input variables, and the UCS at different curing times are used as output variables. The dataset is preprocessed using
normalization to eliminate the influence of different units on the model. The dataset is randomly divided into an 80 % training set and
a 20 % validation set to train and evaluate the predictive performance of the model. Due to the small size of the dataset, to avoid
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overfitting, all models were trained using 5-fold cross-validation. Finally, SSA, ELM, and GA are combined to achieve collaborative
modeling, constructing a machine learning prediction model aimed at finding the optimal mixing ratio of coupled factors for multiple
objectives. The model construction process is shown in Fig. 10.

4.2. Construction and optimization of the model

4.2.1. Construction of a basic model

To select the basic model with the best predictive performance as the basic model for the SCPB proportion design optimization, 3
evaluation indicators, R?, RMSE, and VAF, are used to characterize the predictive performance of ELM, SVR, XGBoost, and RF. To
ensure fairness in the comparison of the basic models, the parameters are adjusted in advance so that each model achieves its optimal
predictive performance. The predictive performance of the different basic models is as follows.

(1) ELM

In the ELM model, the number of hidden layer neurons has the most significant effect on the prediction performance of ELM. Too
many neurons can lead to overfitting of the model, while too few neurons can lead to underfitting. Therefore, to obtain the optimal
performance of ELM, the 10-fold cross-validation method is used to evaluate the performance of the model under different numbers of
hidden layer neurons, and the optimal number of hidden layer neurons is obtained. Fig. 11 shows that when the number of hidden
layer neurons is 42, the fitness value is minimal. Therefore, the optimal number of hidden layer neurons for the ELM is 42. Substituting
the optimal hyperparameters into the ELM yields the prediction result marginal histogram shown in Fig. 12(a). This shows that the
measured values and predicted values of the ELM are uniformly and compactly distributed on both sides of the y = x line. The training
sethasR2 = 0.9275, RMSE = 0.0851, and VAF = 92.7813, while the testing set has R> = 0.9123, RMSE = 0.0792, and VAF = 91.3977,
indicating that the ELM has excellent prediction performance.

(2) SVR

In the SVR model, the regularization parameter (C) and the implicit parameter (y) have the most significant effect on the prediction
performance of the SVR model. The grid search method (GSM) finds the optimal parameters by specifying multiple candidate values
for C and y and traversing all possible combinations of these values. The search range for C is set to (0.1, 100), and the search range for y
is set to (0.001, 1). After the search, best C = 1.4915 and best_y = 0.5924. Substituting the optimal hyperparameters into the SVR
model yields the prediction results marginal histogram shown in Fig. 12(b). This shows that the measured values and predicted values
of the SVR model are uniformly distributed on both sides of the line of y = x. The training set has an R? of 0.8582, RMSE of 0.1177, and
VAF of 85.9046, while the testing set has an R? of 0.8025, RMSE of 0.1188, and VAF of 80.6624, indicating that the SVR model has
good predictive performance.

(3) XGBoost model

In the XGBoost model, the maximum decision tree depth (max_depth), learning rate (learning_rate), and L2 regularization coef-
ficient (reg_lambda) have the most significant effects on the prediction performance of the XGBoost model. Similarly, the XGBoost
model is tuned to its optimal state using the GSM. After searching, when max depth = 6, learning rate = 0.042, and reg lambda
= 0.08, the prediction performance of the XGBoost model reached its optimal state. The prediction result marginal histogram is shown
in Fig. 12(c). The measured values and predicted values of the XGBoost model are scattered on both sides of the straight line of y = x.
The training set has an R? of 0.7548, RMSE of 0.1566, and VAF of 75.9027, while the testing set has an R? of 0.6484, RMSE of 0.1585,
and VAF of 65.5663, indicating that the predictive performance of the XGBoost model is average.

(4) RF model

In the RF model, the number of decision trees (n_estimators) and the maximum depth of decision trees (max_depth) have the most
significant effect on the prediction performance of the RF model. Therefore, random search is first used for preliminary parameter
screening, and then Bayesian optimization is used in a smaller range to fine-tune the parameters until the RF model achieves the best
prediction performance. The optimal parameters obtained by random search are n_estimators= 500 and max_depth= 5, and the
optimal parameters after fine-tuning with Bayesian optimization are n_estimators= 476 and max_depth= 23. The marginal histogram
of the prediction results obtained when the RF model reaches its optimal state is shown in Fig. 12(d). It shows that the measured values
and predicted values of the RF model are significantly offset on both sides of the line(y = x). The training set has an R? of 0.7076, RMSE
0f 0.1710, and VAF of 72.3840, while the testing set has an R? of 0.7032, RMSE of 0.1456, and VAF of 70.7952. This indicates that the
RF model has poor predictive performance.

4.2.2. Construction of a basic model

In the comparison of the predictive performance of the above-mentioned basic models, ELM outperformed other models in all
evaluation metrics. This indicates that ELM has stronger robustness and can accurately predict the nonlinear relationship between
multi-objective coupling factors and UCS. Therefore, ELM is selected as the basic model for the optimization of the combination
proportion in SCPB.

In this study, 3 optimization algorithms—SSA, particle swarm optimization (PSO), and gray wolf optimization (GWO) [47,48] —are
employed to further optimize the hyperparameters of the ELM model, thereby enhancing its predictive performance. To ensure that all
algorithms achieve optimal optimization results under the same conditions, the maximum number of iterations for all algorithms is set
to 100, and the population size is set to 40. A 10-fold cross-validation method is used to determine the optimal number of hidden layer
nodes and the initial learning rate for the ELM model. The results of optimizing different base models are as follows.

(1) SSA-ELM

SSA is used to optimize ELM, and the optimization results of SSA-ELM are as follows: optimal number of hidden layer nodes = 15,
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optimal initial learning rate = 0.0287. The dataset is substituted into the optimal SSA-ELM for training, and the UCS prediction results
and error distributions of the training set and test set of SSA-ELM are shown in Fig. 13. As Fig. 13(a) indicates, the prediction per-
formance of SSA-ELM is good (R? = 0.9811, RMSE = 0.0542, VAF = 94.8303). The ELM optimized by the SSA algorithm demonstrates
a significant improvement in prediction performance, with measured values and predicted values showing high consistency. From
Fig. 13(b), it can be seen that the 95 % prediction interval and 95 % confidence interval of SSA-ELM are both narrow, and the predicted
data points are all located within the 95 % prediction band, concentrated around the 95 % confidence interval and the ideal curve. In
summary, SSA demonstrates outstanding effectiveness in optimizing ELM, significantly improving the predictive accuracy and
generalization ability of the model, and validating its strong advantages in enhancing ELM performance.

PSO is used to optimize ELM, and the optimization results of PSO-ELM are: optimal number of hidden layer nodes = 22, optimal
initial learning rate = 0.0398. The UCS prediction results and error distribution of the training set and testing set of PSO-ELM are
shown in Fig. 14. As can be seen from Fig. 14(a), PSO-ELM achieves good prediction performance (R*> = 0.9051, RMSE = 0.0942, VAF
= 82.6303), but it is inferior to SSA-ELM. The distribution of measured values and predicted values exhibits a dispersed characteristic.
From Fig. 14(b), the predicted data of PSO-ELM are mostly within the 95 % prediction interval, but they are relatively dispersed near
the 95 % confidence interval and the ideal curve. In summary, PSO effectively optimizes ELM.

(3) GWO-ELM

GWO is used to optimize ELM, and the optimization results of GWO-ELM are as follows: the optimal number of hidden layer nodes
= 12, and the optimal initial learning rate = 0.0377. The UCS prediction results and error distribution of the training set and testing set
of GWO-ELM are shown in Fig. 15. From Fig. 15(a), it can be seen that the prediction performance of GWO-ELM is generally average
(R? = 0.8956, RMSE = 0.1142, VAF = 83.6679), with significant dispersion between the measured and predicted data points. Fig. 15
(b) shows that the 95 % prediction interval and 95 % confidence interval of GWO-ELM are both relatively wide, and the predicted data
points are highly dispersed. This indicates that the optimization effect of GWO on ELM is poor.

4.2.3. Determination of the optimal model

During the optimization of the basic model, ELM exhibits varying degrees of improvement in predictive performance after opti-
mization by SSA, PSO, and GWO. Based on the evaluation indices of each model, SSA-ELM performs the best, with all evaluation
indices (R> = 0.9811, RMSE = 0.0542, VAF = 94.8303) significantly better than ELM, PSO-ELM, and GWO-ELM. To further quantify
the performance of different models, the optimization model ranking method is introduced [49], with the ranking results shown in
Table 8. Based on the comprehensive evaluation results, SSA-ELM is the optimal prediction model with the best predictive perfor-
mance, and therefore it is selected as the optimal model in this study.

4.3. Filling mix proportion design and verification

To achieve high-precision prediction of SCPB strength and intelligent proportioning design, this study selects the optimal SSA-ELM
as the basic model and combines it with GA to design an intelligent proportional design model for accurately predicting SCPB strength,
namely the SSA-ELM-GA. The steps in the synergistic solution process of the SSA-ELM and GA model are as follows.

The first step is to define the objective function. A nonlinear function fssa v is constructed using SSA-ELM, and the nonlinear
function fssa.gm is combined with the target UCS to form the objective function.

The second step is GA solution. The defined objective function is used as the fitness function in GA, and the GA is used for global
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Fig. 12. Prediction results of the basic models: (a) ELM; (b) SVR; (c) XGBoost; (d) RF.
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Fig. 13. SSA-ELM model: (a) Data comparison; (b) Confidence interval.
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Fig. 15. GWO-ELM model: (a) Data comparison; (b) Confidence interval.
Table 8
Ranking of prediction performance of different models.
Method Evaluation indices Ranking of evaluation indices Sum of sorts Ranking
R? RMSE VAF R? RMSE VAF
SSA-SVR 0.9811 0.0542 94.8303 3 3 3 9 3
PSO-SVR 0.9051 0.0942 82.6303 2 2 2 6 2
GWO-SVR 0.8956 0.1142 83.6679 1 1 1 3 1

search to find the minimum value of the fitness function, which is the optimal solution. The proportion corresponding to this optimal
solution is the optimal proportion. This achieves accurate prediction of SCPB strength and intelligent design of proportions.

This study takes a large gold mine in Northeast China as the research case, with target values of 2 MPa and 3 MPa for the 28d UCS.
Based on the above strength target values combined with the nonlinear function fssa-g1m, the objective function is formed as follows.

Fo=min (fssa-eLm-2) s.t. fssa-rLm> 2

F3= min (fssa-eLm-3) s.t. fssa-rLm> 3

Table 9

Results and validation of the optimal SCPB proportion.

14)
(15)

Objective function

Optimal proportion

28d UCS experimental verification value

X3 Xy X3 Target UCS (MPa) Measured value (MPa) Relative error (%)
F, 16.248 8.515 68.592 2.00 2.11 5.50 %
F3 16.075 8.832 68.775 3.00 3.08 2.67 %
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Based on existing research findings, this study adopted real number encoding for individual coding in the GA solution process, with
a population size of 100, 100 evolutionary generations, a crossover probability of 0.4, and a mutation probability of 0.2. The optimal
SCPB proportion is obtained using GA, as shown in Table 9. To verify the accuracy of the SSA-ELM and GA collaborative solution,
further laboratory SCPB proportion experiments are conducted, with the experimental results also listed in Table 9. As shown in
Table 9, the optimal SCPB proportions designed by SSA-ELM-GA yielded 7d UCS and 28d UCS of 2.11 MPa and 3.08 MPa, respectively,
with relative errors of only 5.50 % and 2.67 % compared to the target values. This indicates that SSA-ELM-GA can accurately predict
the strength of SCPB and quickly and accurately obtain the optimal backfill proportion that satisfies the constraints of actual engi-
neering projects, thereby reducing cumbersome manual experiments and promoting the development of mining engineering toward
high efficiency, low cost, and intelligence.

5. Conclusion

This study prepared SCBP using ST, SF, and FA as mixed aggregates and SS, FDG, and GBFS as binder. Based on the MAA model, the
aggregate mix ratio is optimized to achieve the maximum aggregate packing density, resulting in the optimal mixed aggregate mix
ratio of m(SF): m(FA): m(ST) as 10:20:70. The strength of SCPB at each curing time increases with the increase of binder dosage and
slurry concentration. With the increase of SF dosage, the strength first increases and then decreases. The results of single factor analysis
show that binder dosage and slurry concentration have a significant effect on strength, while SF dosage has no significant effect.
Microstructural analysis revealed that the strength development mechanism of SCPB is closely related to the content of SF, FA, and ST.
SF and FA release active components through hydration reactions, filling the pores of aggregates and improving packing density. ST
provides the basic framework for SCPB. The ternary composite binbder used in this study consists of SS, GBFS, and FDG. SS activates
the hydration reaction of GBFS, while FDG promotes the formation of AFt. During hydration, the generated AFt and C-S-H syner-
gistically enhance the density and mechanical properties of SCPB. Based on the SSA-ELM-GA intelligent backfilling proportion design
model, high-precision prediction of SCPB strength is achieved, enabling rapid and accurate determination of the optimal SCPB pro-
portion, thereby reducing cumbersome manual experiments.

Future studies could further investigate the effects of different industrial solid waste combinations on the performance of SCPB,
particularly focusing on the activation and synergistic effects of novel solid waste materials. Additionally, integrating more machine
learning algorithms (e.g., deep learning) could optimize the mix proportion model, enhancing prediction accuracy and generalization.
Research should also address long-term durability (e.g., impermeability, frost resistance) and environmental behavior (e.g., heavy
metal leaching) to advance practical applications of green backfill technology. For micro-mechanisms, in-situ characterization tech-
niques (e.g., X-CT) could reveal the dynamic formation process of hydration products, providing a more precise theoretical basis for
material design. Finally, developing low-cost, high-efficiency industrial production processes is essential to promote large-scale
implementation in mining engineering.
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